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This seminar paper reviews Kurt Gödel's article �What is Cantor's continuum prob-

lem?�1. Some background in mathematics and logic is essential to understand Gödel's

text. As this paper aims to be almost self-contained, short recaps, rough explanations

and selective examples are provided where appropriate. Technical details are omitted in

these parts though. It is structured in a way that the versed reader can easily skip the

examples and �Properties of� sections without loosing the plot.

Section 0 frames the general context recalling relevant �ndings and terms in mathe-

matical logic. Since Gödel's article is structured in a sensible way sections 1-5 proceed

analog to Gödel's article. The �rst sections introduce cardinal numbers and the contin-

uum hypothesis. Later sections bring up questions about the foundations of set theory

and Gödel discusses possible solutions to the continuum problem. Section 6 closes with

a discussion.

0. Context

Kurt Gödel's2 paper entitled �What is Cantor's continuum problem?�3 was �rst published in The

American Mathematical Monthly in 19474. At this time he was at the Institute for Advanced Study

in Princeton, New Jersey. His completeness theorem as well as his incompleteness theorems were

already proven years before5. Later, in 1983, a revised and expanded version of this paper was pub-

lished in Paul Benacerraf6 and Hilary Putnam's7 �Philosophy of Mathematics: Selected Readings�8.

At this opportunity the quintessence of Gödel's completeness and incompleteness theorems as

well as some essential terms are rather informally recalled below.

1Göd83.
2Kurt Friedrich Gödel; ∗ 1906; † 1978.
3Georg Ferdinand Ludwig Philipp Cantor; ∗ 1845; † 1918.
4Göd47.
5Göd30; Göd31.
6Paul Benacerraf; ∗ 1931.
7Hilary Whitehall Putnam; ∗ 1926.
8Göd83.
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0.1. Properties of �rst-order logic

soundness

⊢ P =⇒ |= P

completeness theorem

⊢ P ⇐= |= P

completeness

⊢ P ⇐⇒ |= P

compactness if a formula P follows from a (possibly in�nite) set of formulas X, there exists a �nite

subset X ′ ⊆ X such that P follows from this �nite set of formulas

Löwenheim-Skolem theorem

downward in�nite structures have elementary substructures of all smaller in�nite cardinalities

upward in�nite structures have elementary extensions of all larger cardinalities

0.2. Properties of theories T ⊆ L

consistent a theory T is consistent i�

∄φ ∈ L : φ ∈ T and ¬φ ∈ T

(negation) complete a theory T is (negation) complete i�

∀φ ∈ L : φ ∈ T or ¬φ ∈ T

independent sentence a sentence φ ∈ L is said to be independent of a theory T i� neither φ nor

¬φ is provable from that theory (so the theory is incomplete)

incompleteness theorem I every recursively axiomatized9su�ciently expressive10 (rase) theory can

not be both consistent and complete;

every rase theory which is consistent is incomplete

incompleteness theorem II if a rase theory is consistent it can not prove its own consistency

9One can think of a theory being �recursively axiomatized� as �a computer program can recognize whether a given
proposition is an axiom of that theory�.

10One can think of �su�ciently expressive� as �capable of expressing all primitive recursive functions, properties and
relations�. Robinson11 investigated the minimal prerequisites (Rob50).

11Raphael Mitchel Robinson; ∗ 1911; † 1995.
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0.3. Link to the continuum problem

Obviously Kurt Gödel's incompleteness theorems somehow settled David Hilbert's12 second prob-

lem13 and sabotaged Hilbert's Programme: arithmetic can not prove its own consistency.

Every consistent recursively axiomatized theory which contains Robinson arithmetic (RA) is in-

complete and hence even incompletable. Furthermore it can not prove its own consistency. This ap-

plies to all the known theories like RA, Peano arithmetic (PA), Principia Mathematica and Zermelo-

Fraenkel set theory with and without axiom of choice (ZF(C)).

Cantor's continuum problem, aka the continuum hypothesis (CH)14, is again one of Hilbert's

problems. It is linked to the aforementioned �ndings in the following way:

In 1938 Gödel showed that given consistency CH can not be disproved from ZF(C), i. e. ¬CH
is not provable15. Nine years later he published the �rst version of his paper �What is Cantor's

continuum problem?�. When writing up the extended version of his article16 Gödel got to know

about Cohen's17 result at the last moment and added a postscript: In 1963 Cohen showed that

given consistency CH is not provable either18.

In a nutshell: Assuming consistency of a rase9,10 theory like ZF(C) there must be independent

statements due to Gödel's incompleteness theorems. ZF(C) is widely assumed to be consistent and

hence incomplete. It turned out that under this assumption CH is independent from ZF(C), i. e.

neither provable nor disprovable from ZF(C).

1. The concept of cardinal number

At �rst Gödel rephrases Cantor's continuum problem as one of the following questions.

�How many points are there on a straight line in euclidean space?�

�How many di�erent sets of integers do there exist?�

Obviously these rephrased questions do not answer the article's main question �What is Cantor's

continuum problem?�. Later it will become clear how they connect to CH.

As Gödel points out, these questions already depend on the concept of numbers being extended

to in�nite sets. To justify these simpli�ed questions he introduces Cantor's de�nition of in�nite

numbers, the concept of cardinal numbers. He claims that �after closer examination� this will turn

out to be the uniquely determined way of extending the concept of numbers.

12David Hilbert; ∗ 1862; † 1943.
13�Prove that the axioms of arithmetic are consistent.�
14The CH is a hypothesis of general mathematical interest which was advanced by Cantor in 1878. Below its

statement will be clari�ed.
15Göd38.
16The revision was already part of the �rst edition of the selected readings published in 1964.
17Paul Joseph Cohen; ∗ 1934; † 2007.
18Coh63.
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He argues as follows: Which cardinal number is assigned to a set should not depend on the

properties of the objects contained in that set. Gödel asserts that �we certainly want� that the

number assigned to a set stays the same no matter how the properties or mutual relations of objects

in that set are being changed. He refers to mapping the unit interval one-to-one on the unit square

by changing properties of the �mass points� in the unit interval (cf. example 2). Supposedly, this

supports his argument for sets of physical objects.

The concept of numbers is said to be satisfactory only if it is not dependent �on the kind of

objects that are numbered� be they physical objects or not.

?1

Gödel concludes that �there is hardly

any choice left but to accept Cantor's de�nition of equality between numbers�19. Therefore �we

certainly want� that the extension of the concept of numbers to in�nite sets preserves Cantor's

de�nition of equality between numbers assigned to sets.

Equal, greater and less are de�ned as usual, e. g. (cardinal) numbers are equal i� there is a

bijection between the corresponding sets. Existence of a cardinal number is identi�ed with existence

of a set of that cardinal number. Since the power set of a set has always greater cardinality than

the set itself (cf. example 1), these de�nitions yield in�nitely many di�erent cardinal numbers.

Gödel points out that �all ordinary rules of computation� and arithmetical operations can be

extended to cardinal numbers �without any arbitrariness� as well. This way Gödel tries to pin down

the concept of cardinal numbers as the unique extension of the concept of numbers.

In a �nal step Gödel employs the ordinary systematic representation of cardinal numbers which

allows to uniquely identify the cardinal number belonging to an individual set. This is �to denote

the cardinal number immediately succeeding the set of �nite numbers by ℵ0, the next one by ℵ1,

etc.�, ℵω immediately succeeds all ℵi where i ∈ N and is followed by ℵω+1 and so forth.

1.1. Examples

Gödel indirectly referred to some of the following examples which demonstrate some properties of the

concept of (in�nite) numbers. Furthermore they are sometimes surprising when proving our intuition

wrong or at least casting them into doubt. Having these examples ready helps understanding the

(rephrased) statement of the continuum problem.

Example 1. (Cantor's theorem)

Let A be a set. Clearly |A| ≤ |P(A)| since x 7→ {x} is an injective map A → P(A). Assume there

is a surjective map f : A → P(A). Set C := {x ∈ A : x /∈ f(x)}. Since f is assumed to be

a surjective map A → P(A) and C ∈ P(A) there exists a ∈ A for which f(a) = C. a ∈ f(a) =

C ⇐⇒ a /∈ f(a) = C yields a contradiction. Therefore the assumption must be wrong and hence

|A| < |P(A)| = 2|A|.

19What Gödel refers to as �Cantor's de�nition of equality between numbers� is also often called �Hume's principle�20.
20David Hume; ∗ 1711; † 1776.
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Example 2. (unit interval and unit square)

For every number x in the unit interval [0, 1) ⊊ R consider the decimal representation

x =
∑

0<n∈N

αn

10n
, ∀0 < n ∈ N : αn ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Forbidding decimal representations with a trailing in�nite sequence of 9s makes this representation

unique while still allowing to represent every number x in the unit interval. Grouping the decimal

places into groups which all range up to the next digit di�erent from 9 yields a unique representation

x = 0, x1x2x3 . . . (e. g. 0, 3 990 4 97 . . . ) for every x ∈ [0, 1) which enables the following de�nition:

f : [0, 1) → [0, 1)× [0, 1) ⊊ R2

0, x1x2x3 . . . 7→ (0, x1x3 . . . ; 0, x2x4 . . . )

Since f is one-to-one, a bijection between the unit interval and the unit square is found; hence

|[0, 1)| = |[0, 1)× [0, 1)|.

Example 3. (open intervals of reals)

Let a, b, c, d ∈ R with a < b and c < d. (a, b) ⊆ R and (c, d) ⊆ R have same cardinality since the

following map is one-to-one.
f : (a, b) → (c, d)

x 7→ (x−a)
(b−a) · (d− c) + c

Especially |(a, b)| = |(−π
2 ,

π
2 )| for all a, b ∈ R with a < b. Since tan : (−π

2 ,
π
2 ) → R is one-to-one it

follows that

|(a, b)| = |R| for all a, b ∈ R with a < b.

Example 4. (reals and power set of naturals)

For every number x in the unit interval [0, 1] ⊊ R consider the binary representation

x =
∑
n∈N

αn

2n+1
= 0, α0α1α2 . . . , ∀n ∈ N : αn ∈ {0, 1}.

This allows the de�nition of the following one-to-one map.

f : [0, 1] → P(N)
0, α0α1α2 . . . 7→ {n ∈ N : αn = 1} ∈ P(N)

Hence

|[0, 1]| = |P(N)|.
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1.2. Take-home message

Putting things together21 yields

ℵ0 = |N| < |P(N)| = |R|=|(a,b)|=|R2| = 2|N| = 2ℵ0 where a, b ∈ R : a < b.

2. The continuum problem, the continuum hypothesis, and the

partial results concerning its truth obtained so far

Introducing the concept of cardinal numbers gives meaning to the question �How many?�. This

allows Gödel to clarify the statement of CH with his vivid formulations above. The questions turn

into identifying |(a, b)| (�how many points on a straight line�) or identifying |P(N)| (�how many sets

of integers�). Indeed this is the same as identifying the number |R| of points on the continuum.

At this point Cantor's continuum hypothesis comes into play: Considering that ℵ0 = |N| < |R|
Cantor conjectured that the cardinal number assigned to the continuum is ℵ1.

CH |R| = ℵ1.

Hence supposing that there is no cardinal number between |N| and |R|. Gödel puts this equiva-
lently as �Any in�nite subset of the continuum has the power either of the set of integers or of the

whole continuum.�.

The question CH tries to answer looks simple. Little preliminary work had to be done to �nally

come across this issue. Gödel stresses that nevertheless there has been no great breakthrough in

answering CH. As is known, the cardinal number of the continuum is lower bounded by ℵ0 < |R|. It
is undecided whether this number is regular or singular and whether it is accessible (cf. section 2.1.

below for de�nitions). König's22 theorem yields only a restriction for its co�nality.

In this section Gödel brie�y demonstrates these shortcomings. He connects CH with general

questions of cardinal arithmetic as CH can be rephrased as 2ℵ0 = ℵ1. CH becomes a question of

evaluating products and powers of cardinal numbers:

Some basic rules for multiplication and exponentiation of cardinal numbers are available. Assum-

ing the generalized continuum hypothesis

GCH 2ℵα = ℵα+1 for every α.

all products and powers could more easily be evaluated (cf. example 6). This way he emphasizes

the pronounced failure that there is no answer for (G)CH.

21Technical details have been omitted. E. g. to be more rigorous one would need to �x the inconsistent use of open,
half-open and closed intervals in the examples.

22Gyula K®nig; ∗ 1849; † 1913.
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2.1. Properties of cardinals and examples of cardinal arithmetic

co�nality the co�nality cf(m) of a cardinal number m is the smallest number n such that m is the

sum of n numbers < n

(as a side note: one can derive 2ℵ0 ̸= ℵω using König's theorem � at cost of using the axiom

of choice or postulating König's theorem itself)

regular a cardinal number m is regular i� cf(m) = m

singular a cardinal number m is singular i� cf(m) ̸= m

(strongly) inaccessible an in�nite cardinal number m is inaccessible if it is regular and has no

immediate predecessor (i. e. m is a weak limit cardinal)

m is strongly inaccessible if each product of fewer than m numbers < m is < m (i. e. m is a

strong limit cardinal)

Example 5. (cardinal exponentiation)

If 2 ≤ κ ≤ λ and λ is in�nite, then κλ = 2λ. This is proven by

2λ ≤ κλ ≤ (2κ)λ = 2κλ = 2λ

since ordinary rules of exponentiation hold. (κλ = max(κ, λ) = λ assuming the axiom of choice.)

Example 6. (exponentiation assuming GCH)

Let ℵα be a regular cardinal number. Then cf(ℵα) = ℵα and hence ℵα
cf(ℵα) = ℵα

ℵα . The previous

example yields ℵα
cf(ℵα) = ℵα

ℵα = 2ℵα . Assuming GCH then yields

ℵα
cf(ℵα) = ℵα

ℵα = 2ℵα = ℵα+1.

3. Restatement of the problem on the basis of an analysis of the

foundations of set theory and results obtained along these lines

The lack of results concerning CH might not be solely due to mathematical di�culties. Gödel raises

the question of a more profound analysis of the used terms (e. g. set, one-to-one correspondence,

etc.) and underlying axioms to resolve this �scarcity of results�.

He points out that intuitionism as �certain philosophical conception� leads to destructive results

in this �eld � e. g. rejecting all ℵ's greater than ℵ1 as meaningless. Gödel simpli�es the key idea of

this view, which only considers mathematical objects constructible from mathematical intuition.

In contrast, he sketches a somewhat more Platonistic view which allegedly allows to overcome

this negative attitude towards Cantor's naive set theory:
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Mathematical objects are considered to exist independently of construction or individual intuition.

Talking about truth and soundness only requires the mathematical concepts to be �su�ciently clear�.

If taking this viewpoint, Gödel believes that axiomatization of set theory can be interpreted in a

way such that it serves as adequate foundation of set theory on its whole.

Paradoxes of naive set theory are dispelled as not causing mathematical trouble at all. The

�perfectly naive and uncritical working� in mathematics with sets being obtainable from the set

of integers by iterating the operation set of 23 is said to be proved self-consistent. Antinomies are

avoided by not dividing the totality of all objects into two sets and by only forming sets on the

basis of the set of integers. Hence Gödel views set-theoretical paradoxes as problem for logic and

epistemology � if at all, since e. g. ZF(C) rules out the classic paradoxes of naive set theory.

He points out that the precise axiomatization of set theory allows transforming (almost) all math-

ematical proofs devised up to now, by means of mathematical logic, into a problem of manipulating

symbols. Gödel makes a strong argument that �even the most radical intuitionist must acknowledge

[this] as meaningful�.

Gödel concludes that, no matter which philosophical standpoint is taken, Cantor's continuum

problem retains the meaning of questioning whether and which answer of CH can be derived from

the axiomatization in place. In any case CH is either provable, disprovable or independent if

consistency is assumed. Gödel already showed that CH is not disprovable in that case.

Now comes a key point in Gödel's article. Taking the viewpoint stated above, mathematical

entities exist in an objective way and the axioms try to capture this �well-determined reality�. If

CH turns out to be independent or in other words undecidable24 still the question about the truth

of CH in this reality remains unanswered. Gödel claims that CH must be either true or false in this

reality. Accepting the axioms as sound he concludes that the axioms do not completely describe

that reality if they can not decide CH. Gödel points out two possible ways of tackling this problem:

(a) On the one hand he states that the concept of set itself suggests that there must be axioms

allowing still further iterations of the operation set of. He points to axioms about inaccessible

cardinal numbers by Mahlo25 allowing to apply the operation set of to the set of sets which one can

build from the axioms already in place. This allows generating great trans�nite cardinal numbers.

?2

Gödel considers the extension of axiomatic set theory by this axiom as non-arbitrary: Since this

great cardinal axiom �only unfold[s] the content of the concept of set� he argues that this extension

is implied by the concept of set hence necessary. He seems to contradict himself when noting that

the number of decidable propositions even �far outside the domain of very great trans�nite numbers�

increases when Mahlo's axioms are added � still they do not decide CH.

Gödel argues, that there could be axioms allowing a decision of CH for which there is what he

calls an �intrinsic necessity�.26

23Rationals can be seen as pairs of integers, reals as sets of rationals, real functions as sets of pairs of reals etc.
24Note again that Gödel got to know about Cohen's proof just after �nishing the manuscript of this extended version

of his article. Nevertheless he considered it to be very likely that CH is independent of ZF(C).
25Friedrich Paul Mahlo; ∗ 1883; † 1971.
26In a footnote Gödel mentions an axiom which allows disproving GCH but lacks this intrinsic necessity.
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(b) On the other hand he proposes a way towards the decision of CH which does not rely on

agreeing about the intrinsic necessity of an axiom. It is about justifying a new axiom by its

�success� or �fruitfulness�. A new axiom is fruitful �and hence might be accepted� if it allows

simpler and easier proofs of statements which also can be proven without adding this axiom. Gödel

compares this to the veri�cation of the axioms of the reals, rejected by intuitionists: They allow

simpler proofs of theorems in number theory.

?3

The last bit of this section contains a rather interesting link to physical theories: Gödel suspects

that there might be such fruitful axioms, so fruitful that they simplify proofs, are rich of veri�able

consequences and yield powerful (constructive) methods that �even if not intrinsically necessary�

�they would have to be accepted at least in the same sense as any well-established physical theory�.

As his heading suggests, Gödel links Cantor's continuum problem to the foundations of set theory.

The problem is viewed as a problem of the axiomatization of set theory. The question of provability

or decidability from a certain set of axioms persists independently of the philosophical viewpoint.

Taking the suggested Platonistic view also raises the question of �nding new axioms which allow to

decide CH correctly hence capture more of the �well-determined [mathematical] reality�.

4. Some observations about the question: In what sense and in

which direction may a solution of the continuum problem be

expected?

Gödel expected what Cohen's proof �nally con�rmed: CH is independent hence undecidable from

current set theory provided consistency. In this section he tries to give clear indications for his

guess � but also somehow mixing it up with arguments for his claim that CH should be expected

to be false in the mathematical reality. As it is known today that Gödel's guess (concerning the

independence of CH) turned out to be right only arguments which are of further interest for later

discussions are mentioned omitting mathematical details.

First he points out that current axioms do not contain the �characteristics of sets, namely, that

they are extensions of de�nable properties� in the sense that this characteristics is neither explicitly

nor implicitly captured by the axioms. In contrast to an axiom mentioned above which allows

disproving CH26, he points to another axiom which captures this de�nability property and allows

to prove CH. This axiom states that every set is de�nable by ordinal numbers by certain procedures.

It is consistent with the axioms already in place assuming their consistency. This also shows that

adding CH to the axioms of set theory yields a consistent system, again assuming consistency of

the axioms of set theory.

Putting things together: If CH can not be decided from current set theory there might be new

axioms allowing for a decision27, which might seem intrinsically necessary � e. g. one might argue
27Gödel of course already mentioned two of those possible axioms �the axiom of de�nability mentioned here and the
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that the axiom of de�nability captures more of the mathematical reality and hence is necessary.

Gödel appeals to a rather pragmatic view, when listing �implausible consequences� of the con-

tinuum hypothesis. He gives examples of mathematical propositions which follow from CH but are

supposedly implausible. Furthermore, without citing any example (!), Gödel points out that there

are many plausible propositions which imply ¬CH while there is none which implies CH. �Adding

up all that has been said� yields, according to Gödel, good reason for �suspecting that the role of

the continuum problem in set theory will be to lead to the discovery of new axioms� which imply

the negation of CH.

4.1. A sketchy roadmap of Gödel's line of argument so far

(i) take the Platonistic viewpoint that there is an independent mathematical reality

(ii) axiomatization of set theory tries to capture this reality

(iii) CH must be either true or false in this reality

(iv) but CH is neither provable28 nor disprovable from the current axioms

(v) further axioms need to be discovered which allow a correct decision of CH

(vi) the assumption of CH leads to many implausible consequences

(vii) hence the axioms to be found need to allow to disprove CH

The last two points on this list are probably the most problematic ones since they rely on an

interpretation of plausibility. In the next section Gödel supports these steps as �perfectly possible�

by stating that the term implausible is not arbitrarily assigned to mathematical consequences or

objects. He suggests the idea of a �mathematical intuition� about the mathematical reality which

is said to be not purely subjective.

5. Supplement to the second edition

Gödel added the supplementary material to the extended version of his article to respond to new

mathematical �ndings in connection with the continuum problem. De facto he only mentions three

mathematical results and then elaborates quite a lot on Errera's29 suggestion which leads him to

a description of his idea of �mathematical intuition�. He defends his standpoint that the question

about the truth of CH is meaningful and important regardless of CH being independent of the

axioms of set theory. This is in contrast to Errera who suggests that the question of the truth of

one mentioned in footnote 26� which do not lead to the same answer though.
27At least Gödel already assumed this to be the case. As already noted he was correct.
29Alfred Errera; ∗ 1886; † 1960.
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CH would then loose its meaning. He compares to the case of Euclid's parallel postulate where the

question of truth lost its meaning by proving non-euclidean geometry consistent. Gödel argues that

these two cases are very di�erent and gives a mathematical and an epistemological reason.

(a) The mathematical argument goes as follows: Euclid's �fth postulate �let's call it E5 here�

is independent of the other axioms of geometry �let's call them E� just like CH is independent of

ZF(C). Now importantly, it occurs that both systems, one built from E and E5 the other from E

and ¬E5, have a model in the original unextended system. Furthermore Gödel argues that both

extensions are likewise fruitful in the sense explained above.

On the contrary, e. g. for the axiom of the existence of inaccessible cardinal numbers, there exists

an asymmetry: only the system with the negation added has a model in the unextended system

and contrariwise only asserting its truth yields a fruitful extension according to Gödel.

CH �can be shown sterile for number theory� and there is a model in the original system

ZF(C)where CH is true. As this might not be the case when assuming other powers of the contin-

uum, Gödel concludes that for CH there might be the same asymmetry which gives meaning to the

question of the truth of CH � even if CH is independent from ZF(C).

(b) The epistemological argument leads Gödel also to an exposure of his idea of mathematical

intuition. He argues that for a hypothetico-deductive system a question might loose meaning when

proven undecidable. But as soon as the primitive terms in this system are �taken in a de�nite sense�

the question retains its meaning. E. g. as soon as geometry refers to the behaviour of rigid bodies,

the question of the parallel postulate retains its meaning.

He argues that this also applies to the question of the truth of CH in set theory. He admits

though, that in geometry one does refer to physical objects or their sense perception whereas when

giving meaning to the primitive set-theoretical terms one does not. The decision of truth of E5 in

geometry is decided outside of mathematical intuition.

These two arguments try to reject Errera's suggestion and try to legitimate the last two steps

of his line of argument presented in section 4.1. Gödel now works out his proposed concept of

mathematical reality and mathematical intuition.

On the one hand the idea of mathematical intuition tries to retain the meaning of the question of

the truth of CH. On the other hand Gödel's description of a mathematical intuition in mathematical

practice might appeal to many mathematicians. Although set theory is remote of sense experience

and does not belong to the physical world, Gödel assures that

�we do have something like a perception also of the objects of set theory, as is seen from

the fact that the axioms force themselves upon us as being true�.

If this is the case is of course arguable. But Gödel concludes that this mathematical intuition
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can lead to the correct (cf. 4.1.(v)-(vii)) solution of Cantor's continuum problem just in the same

way as physical theories are built up on sense perception.

It is expected that sense perceptions agree with physical theories and that (yet) undecidable ques-

tions have meaning in this setting and �may be decided in the future�. Considering set-theoretical

paradoxes as no more troublesome as deceptions of sense, Gödel argues that there is no reason why

this kind of �mathematical perception� should be less trustworthy than sense perception.

Accepting this idea and taking terms of set theory in a de�nite sense retains the meaning of

the question of the truth of CH comparably how physical interpretation does in the case of E5.

Mathematical intuition about (the plausibility of) some implications of CH or its negation leading

to a decision of CH is supposed to be �perfectly possible�.

Gödel states that mathematical intuition should not be thought of giving immediate knowledge

of the concerned objects. Instead the ideas of objects are formed based on something �which is

immediately given�. He compares this to physical experience where the sensations are immediately

given. But ideas of physical objects contain �constituents qualitatively di�erent from sensations�

and still one can not just think of qualitatively new elements but only recombine given ones.

Although the objects of mathematical intuition can not be associated with our sense organs,

Gödel claims that they are not purely subjective. They �may represent an aspect of objective

reality�, of mathematical reality, which may be sensed by us �due to another kind of relationship

between ourselves and reality� as opposed to sense organs.

This �relationship between ourselves and reality� is not further explained by Gödel and might seem

quite dubious. Additionally Gödel also tries to make his argument without requiring acceptance of

his vaguely presented idea of �the objective existence of the objects of mathematical intuition�. The

sole existence of a clear intuition allowing to produce axioms of set theory is, as a psychological fact,

said to be enough to give meaning to primitive elements of set theory and hence to the question of

truth of CH.

Gödel closes that mathematical intuition could lead to an answer of CH. In contrast the presented

criterion of fruitfulness (cf. section 3.(b)) can not yet settle the question of the truth of CH since

too little is known about the consequences of CH. Number-theoretical consequences veri�able up

to any given integer would easily allow to apply this criterion; but according to Gödel it is not yet

possible to make the truth of any set-theoretical axiom �probable in this manner�.

6. Discussion

Gödel answers the main question �What is Cantor's continuum problem?� by introducing cardinal

numbers, rephrasing and explaining CH more �guratively and presenting the problem as a problem

of the axiomatization of set theory. In addition he presents the idea of a mathematical reality
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of which one has a mathematical intuition which might lead to an answer to this axiomatization

problem. Gödel claims that the problem should be �xed in a way such that �nally CH can be

disproved.

The �rst part, when explaining the continuum problem and how it relates to axiomatization of

set theory, might seem absolutely watertight and mathematically rigorous. Here some assumptions

are pointed out which sneak into Gödel's line of argument rather unnoticed. At �rst sight they

might seem indubitable and therefore remained unnoticed.

!1

Right at the beginning �when introducing the concept of cardinal numbers� there is a question-

able argument. Gödel claims that �we certainly want� that the concept of numbers preserves the

de�nition of equality by existence of a bijection. He refers to the intuitive idea that the number of

elements in a set does not change if the properties of the elements are changed. Admittedly this

seems rather sensible but still it is more of an intuitive argument.

Continuing with intuitive reasoning one could likewise expect that the concept of numbers allows

to conclude |(0, 1)| < |R| or |(0, 1)| < |(0, 2)|. So a straight line might intuitively be expected to be

smaller than the whole real line. This connects to the examples which might be counterintuitive,

e. g. it can be proved that there are as many points on the unit interval as on the unit square based

on the concept of numbers Gödel presented (cf. example 2). E. g. measure theory tries to capture

this intuition.

The demur is that there might be several intuitive expectations towards the concept of numbers

which are not all ful�lled or ful�llable by the concept of numbers at the same time. Hence one

would need to give good reason for the choice of intuitive expectations that are ful�lled by a certain

concept of numbers.

To put it Gödelian: not all of the mathematical intuition about the mathematical reality of

numbers might be captured by Cantor's concept of cardinal numbers. At this point it is especially

critical since the concept of cardinal numbers might even contradict mathematical intuition.

!2

After turning the problem into a problem of axiomatization of set theory Gödel concluded that

the current axiomatization of set theory does not completely describe the mathematical reality.

They do not allow for a decision of CH. When presenting two possible ways how one could get a

complete description Gödel considers the possibility that there might be axioms which are intrinsi-

cally necessary, axioms which are implied by the concept of set.

Obviously Gödel contradicts himself, when assuming Mahlo's axiom about inaccessible cardinal

numbers being of that kind and hence claiming that this axiom �only unfold[s] the content of the

concept of set� while at the same time noting that this axiom allows for decision of many propositions

outside the domain of cardinal numbers (e. g. Diophantine equations). So this axiom might just

not only unfold the content of the concept of set but more than that.

There is another question one could raise here: Is there an axiomatization of set theory capturing

all of mathematical reality? Assuming consistency of the axioms already in place there will always be

independent/undecidable propositions due to Gödel's incompleteness theorem. If the axiomatization
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is extended to capture more of the mathematical reality there always will be further undecidable

propositions30. Every undecidable proposition which can be formulated should be either true or

false in the mathematical reality due to the same argument Gödel presents for CH being either true

or false. Following this line of argument it is impossible to ever capture all of the mathematical

reality Gödel proposes.

!3

The aforementioned question connects to Gödel's comparison of fruitful axioms and useful phys-

ical theories. It seems like Gödel sees the connection between axioms and the mathematical reality

comparable to the connection between physical theories and the physical nature: both try to cap-

ture a reality which is objectively existent. So if an axiom is fruitful and yields powerful methods

to deal with mathematical reality it needs to be accepted in the same way as physical theories are

accepted if they help describing and predicting physical nature.

The mathematical reality then might be viewed in the same way as inaccessible objective existent

reality as the physical nature which might also be inaccessible. It is interesting to further develop

this analogy: There are well-established physical theories which are powerful in describing and

predicting parts of physical nature but it turns out that they (a) not fully describe the physical

nature (b) are incompatible with each other. Maybe there are powerful mathematical theories which

show the same behaviour, maybe one can on the one hand describe much of mathematical reality

with ZF(C)&CH and at the same time with ZF(C)&¬CH?

However, Gödel's platonistic idea of mathematical reality is arguable. Still most mathematicians

probably agree with him about a mathematical intuition. Mathematicians might well have an

intuition about what their work refers to and what the content of their mathematical work is.

Gödel even argues that mathematical intuition is not subjective. But it might be that much of the

agreement about mathematical intuition �which hence seems to be objective� is due to being taught

mathematical intuition from the cradle and one can not escape this prede�ned ways of intuitively

thinking/doing mathematics.

Anyhow, one does not need to settle these questions before doing mathematics if taking the

pragmatic view Gödel presented. If the axioms of set theory are accepted based on their fruitfulness

it might be arguable how exactly to decide on the fruitfulness. Nevertheless pragmatism allows for

a decision even if not eternally. Mathematical methods and the underlying axioms can be judged

by their fruitfulness in descriptive disciplines like physics, they can be judged by mathematical

elegance, simplicity or proof-power all on which mathematicians would need to agree.

Since it is impossible to eradicate all undecidable propositions CH might just be one easily

accessible proposition raising such an agreement process. There might be consequences of CH or

¬CH which at one point will enforce the assumption of one or the other. Maybe this will then be as

obvious as when people agreed upon the very basic and rarely doubted modus ponens or the axioms

of ZF(C). It is to be noted, that the wide acceptance of ZF(C) is at its core also (only) based on

agreement upon their fruitfulness, intuitive correctness and power for further mathematical activity.

30Note that every sentence becomes decidable if the extended theory is inconsistent.
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