International Workshop on Pattern Recognition in Neuroimaging June $22,\,2016$

Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data

Sebastian Weichwald, Arthur Gretton*, Bernhard Schölkopf, Moritz Grosse-Wentrup MPI for Intelligent Systems, *Gatsby Computational Neuroscience Unit

Motivation

encoding analysis identifies effects of ${\cal S}$

encoding analysis identifies effects of ${\cal S}$

SCI algorithm: test whether a given variable is an effect of \mathcal{C}_1

linear mixing

observed linear mixture

linear mixing

observed linear mixture

linear mixing

find linear combination
$$w$$
 such that $S \to C_1 \to \overbrace{[F_1,F_2,F_3]w}^2$

- 1. Motivation
- 2. Causal Bayesian Networks
- 3. Problem description
- 4. Non-linear MERLiN algorithm
- 5. Empirical validation
- 6. Wrap-up & Outlook

Causal Bayesian Networks

$$V1|\operatorname{do}(S = \mathsf{cat})$$

$$V1|\operatorname{do}(S=\mathsf{cat}) \not\sim V1|\operatorname{do}(S=\mathsf{dog})$$

$$V1|\operatorname{do}(S=\operatorname{cat}) \not\sim V1|\operatorname{do}(S=\operatorname{dog})$$

infer the causal graph

$$V1|\operatorname{do}(S=\operatorname{cat}) \not\sim V1|\operatorname{do}(S=\operatorname{dog})$$

► infer the causal graph

causal structure ↔ (conditional) (in)dependence

Problem description

Given

samples of S, C_1 and ${\it F}$

$$F = \begin{bmatrix} F_1 \\ \vdots \\ F_d \end{bmatrix} = \mathbf{A} \begin{bmatrix} C_1 \\ \vdots \\ C_d \end{bmatrix} = \mathbf{A}C$$

Given

samples of
$$S, C_1$$
 and F

$$F = \begin{bmatrix} F_1 \\ \vdots \\ F_d \end{bmatrix} = \mathbf{A} \begin{bmatrix} C_1 \\ \vdots \\ C_d \end{bmatrix} = \mathbf{A}C$$

Goal

find linear combination $oldsymbol{w}$ such that

Given

samples of
$$S, C_1$$
 and F

$$F = \begin{bmatrix} F_1 \\ \vdots \\ F_d \end{bmatrix} = \mathbf{A} \begin{bmatrix} C_1 \\ \vdots \\ C_d \end{bmatrix} = \mathbf{A}C$$

Goal

find linear combination $oldsymbol{w}$ such that

5

Non-linear MERL^{*}N algorithm

The MERLiN approach

 F_1 F_2 F_3 C_2 C_4 C_5

Sufficient conditions

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}}F$, and $S \to C_1$

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}} F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow \left(S\right) \longrightarrow \left(C_1\right) \longrightarrow \left(\mathbf{w}^{\mathsf{T}} F\right)$

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}} F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow \left(S\right) \longrightarrow \left(C_1\right) \longrightarrow \left(\mathbf{w}^{\mathsf{T}} F\right)$

Idea

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}} F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow S \longrightarrow C_1 \longrightarrow (\mathbf{w}^{\mathsf{T}} F)$

Idea

Optimise $oldsymbol{w}$ such that

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}}F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow S \longrightarrow C_1 \longrightarrow (\mathbf{w}^{\mathsf{T}} F)$

Idea

Optimise $oldsymbol{w}$ such that

(a) dep $(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}}F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow S \longrightarrow C_1 \longrightarrow (\mathbf{w}^{\mathsf{T}} F)$

Idea

Optimise w such that

- (a) $\operatorname{dep}\left(C_{1}, \boldsymbol{w}^{\mathsf{T}}F\right)$ is high
- (b) $dep(S, \boldsymbol{w}^{\mathsf{T}}F|C_1)$ is low

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}}F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow S \longrightarrow C_1 \longrightarrow (\mathbf{w}^{\mathsf{T}} F)$

Idea

Optimise $oldsymbol{w}$ such that

- (a) $dep(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high \rightarrow HSIC
- (b) dep $(S, \boldsymbol{w}^{\mathsf{T}} F | C_1)$ is low

Given S (randomised), C_1 , $\boldsymbol{w}^{\mathsf{T}}F$, and $S \to C_1$, then

$$C_1 \not\perp \mathbf{w}^{\mathsf{T}} F$$
 and $S \perp \mathbf{w}^{\mathsf{T}} F \mid C_1 \Longrightarrow S \longrightarrow C_1 \longrightarrow (\mathbf{w}^{\mathsf{T}} F)$

Idea

Optimise w such that

- (a) $dep(C_1, \mathbf{w}^T F)$ is high \rightarrow HSIC
- (b) $dep(S, w^T F | C_1)$ is low \rightarrow regression-based criterion

If there exists a regression function r with $\boldsymbol{w}^{\mathsf{T}}F - r(C_1) \perp (S, C_1)$,

If there exists a regression function r with $\boldsymbol{w}^{\mathsf{T}}F - r(C_1) \perp (S, C_1)$, then $S \perp \boldsymbol{w}^{\mathsf{T}}F \mid C_1$.

Regression-based conditional independence criterion If there exists a regression function r with $\boldsymbol{w}^{\mathsf{T}}F - r(C_1) \perp (S, C_1)$, then $S \perp \boldsymbol{w}^{\mathsf{T}}F \mid C_1$.

Implementation

If there exists a regression function r with $\boldsymbol{w}^{\mathsf{T}}F - r(C_1) \perp (S, C_1)$, then $S \perp \boldsymbol{w}^{\mathsf{T}}F \mid C_1$.

Implementation

If we can find kernel ridge regression parameters (σ, θ) such that $dep(\mathbf{w}^{\mathsf{T}}F - krr_{\sigma,\theta}(C_1), (S, C_1))$ is low,

Regression-based conditional independence criterion If there exists a regression function r with $\boldsymbol{w}^{\mathsf{T}}F - r(C_1) \perp (S, C_1)$, then $S \perp \boldsymbol{w}^{\mathsf{T}}F \mid C_1$.

Implementation

If we can find kernel ridge regression parameters (σ, θ) such that $\operatorname{dep}(\boldsymbol{w}^{\mathsf{T}}F - \operatorname{krr}_{\sigma,\theta}(C_1), (S,C_1))$ is low, then $S \perp \boldsymbol{w}^{\mathsf{T}}F \mid C_1$.

Putting things together

Idea

Optimise \boldsymbol{w} such that

Implementation

Optimise \boldsymbol{w} and σ,θ such that

Optimise \boldsymbol{w} such that

(a)
$$\operatorname{dep}\left(C_{1}, \boldsymbol{w}^{\mathsf{T}}F\right)$$
 is high

Optimise ${\boldsymbol w}$ and σ, θ such that

 F_1 F_2 F_3 F_4 F_5 F_5

Idea

Optimise w such that

(a) $\operatorname{dep}\left(C_{1}, \boldsymbol{w}^{\mathsf{T}}F\right)$ is high

Implementation

Optimise ${\boldsymbol w}$ and σ, θ such that

(a)
$$\operatorname{HSIC}(C_1, \boldsymbol{w}^{\mathsf{T}} F)$$

is high

Optimise w such that

- (a) $dep(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high
- (b) $dep(S, \boldsymbol{w}^{\mathsf{T}}F|C_1)$ is low

Implementation

Optimise ${\boldsymbol w}$ and σ, θ such that

(a) HSIC
$$(C_1, \boldsymbol{w}^{\mathsf{T}} F)$$

is high

Optimise $oldsymbol{w}$ such that

- (a) $dep(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high
- (b) $dep(S, \boldsymbol{w}^{\mathsf{T}}F|C_1)$ is low

Implementation

Optimise ${\boldsymbol w}$ and σ, θ such that

- (a) $\operatorname{HSIC}\left(C_{1}, \boldsymbol{w}^{\mathsf{T}}F\right)$ is high
- (b) $\operatorname{HSIC}\left(\ {m w}^{\scriptscriptstyle \intercal}F \operatorname{krr}_{\sigma,\theta}(C_1)\ ,\ (S,C_1)\ \right)$ is low

Optimise $oldsymbol{w}$ such that

- (a) $dep(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high
- (b) $dep(S, \boldsymbol{w}^{\mathsf{T}}F|C_1)$ is low

Implementation

Optimise ${\boldsymbol w}$ and σ, θ such that

HSIC
$$(C_1, \boldsymbol{w}^{\mathsf{T}} F)$$

- HSIC $(\boldsymbol{w}^{\mathsf{T}} F - \ker_{\sigma, \theta}(C_1), (S, C_1))$

is being maximised.

Optimise $oldsymbol{w}$ such that

- (a) $dep(C_1, \boldsymbol{w}^{\mathsf{T}} F)$ is high
- (b) $dep(S, \boldsymbol{w}^{\mathsf{T}}F|C_1)$ is low

Implementation (Non-linear MERLiN algorithm)

Optimise ${m w}$ and $\sigma, heta$ such that

$$\mathrm{HSIC}\left(C_{1}, oldsymbol{w}^{\mathsf{T}}F\right)$$

- HSIC
$$(\boldsymbol{w}^{\mathsf{T}} F - \operatorname{krr}_{\sigma,\theta}(C_1), (S, C_1))$$

is being maximised.

Empirical validation

S

 C_1 :

S: instruction to up-/downregulate C_1 $\{\pm 1\}$

 C_1 :

F:

S: instruction to up-/downregulate C_1 $\{\pm 1\}$

 C_1 : γ -bandpower in superior parietal cortex

 \mathbb{R}

F

S: instruction to up-/downregulate C_1

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

 $\{\pm 1\}$

 \mathbb{R}

 $\mathbb{R}^{\mathsf{channels} \, imes \, \mathsf{time}}$

S : instruction to up-/downregulate C_1

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

 $\{\pm 1\}$

 \mathbb{R}

 $\mathbb{R}^{\mathsf{channels} \times \mathsf{time}}$

SCI algorithm

S: instruction to up-/downregulate C_1

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

 $\{\pm 1\}$

 \mathbb{R}

 $\mathbb{R}^{\mathsf{channels} \, imes \, \mathsf{time}}$

SCI algorithm

test

$$S \to C_1 \to \gamma\text{-bp}\left(\mathsf{dipole}_j\right)$$

for j = 1, ..., 15028

S: instruction to up-/downregulate C_1 $\{\pm 1\}$

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals} \ \mathbb{R}^{\mathsf{channels} \times \mathsf{time}}$

SCI algorithm

Non-linear MERLiN algorithm

test

$$S \to C_1 \to \gamma$$
-bp (dipole_j)
for $j = 1, ..., 15028$

S : instruction to up-/downregulate C_1 $\{\pm 1\}$

 C_1 : γ -bandpower in superior parietal cortex $\mathbb R$

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

SCI algorithm

Non-linear MERLiN algorithm

test optimise $oldsymbol{w}$ such that

$$S \to C_1 \to \gamma\text{-bp}\left(\mathsf{dipole}_j\right)$$
 $S \to C_1 \to \gamma\text{-bp}\left(\boldsymbol{w}^{\mathsf{T}}F\right)$

for j = 1, ..., 15028

9

S : instruction to up-/downregulate C_1

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

 $\{\pm 1\}$

R = channal

 $\mathbb{R}^{\mathsf{channels} \, imes \, \mathsf{time}}$

SCI algorithm Left hemisphere Right hemisphere Lateral view Medial view

Non-linear MERLiN algorithm

optimise $oldsymbol{w}$ such that

$$S \to C_1 \to \gamma\text{-bp}(\boldsymbol{w}^{\mathsf{T}}F)$$

S : instruction to up-/downregulate \mathcal{C}_1

 C_1 : γ -bandpower in superior parietal cortex

 ${\cal F}$: EEG electrode signals

 \mathbb{R} channels \times time

 $S\,$: instruction to up-/downregulate C_1

 C_1 : γ -bandpower in superior parietal cortex

 $F: \mathsf{EEG} \ \mathsf{electrode} \ \mathsf{signals}$

 $\{\pm 1\}$ \mathbb{R} \mathbb{R} channels \times time

both find $S \rightarrow \gamma$ -bp (SPC) $\rightarrow \gamma$ -bp (MPFC)

Wrap-up & Outlook

feed samples of S, C_1 and ${\it F}$ to the non-linear MERLiN algorithm

feed samples of S, C_1 and F to the non-linear MERLiN algorithm \leadsto recovery of the (non-linear) causal effect C_2 = ${\boldsymbol w}^{\rm T} F$

feed samples of S, C_1 and F to the non-linear MERLiN algorithm imes recovery of the (non-linear) causal effect C_2 = ${\boldsymbol w}^{\sf T} F$

"A general idea to learn causally meaningful features?"

- ► Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data. *PRNI*, 2016. ♠ e-print arxiv.org/pdf/1512.04808.
- ► MERLiN: Mixture Effect Recovery in Linear Networks. Under review. ♠ e-print arxiv.org/pdf/1512.01255.
- Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach. NeuroImage, 2016. ♠ e-print mlin.kyb.tuebingen.mpg.de/Grosse-WentrupNI2015.pdf.
- Causal interpretation rules for encoding and decoding models in neuroimaging. NeuroImage, 2015. sweichwald.de/neuroimage2015.
- ► Causal and anti-causal learning in pattern recognition for neuroimaging. *PRNI*, 2014. ♠ e-print arxiv.org/pdf/1512.04808.

