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Motivation
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SCI algorithm: test whether a given variable is an effect of C
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Cs

find linear combination w such that S — C — [F1, Fy, F3]w
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Causal Bayesian Networks

» causation predicts the impact of interventions
V1|do(S = cat) ¢ V1|do(S = dog)
» infer the causal graph

causal structure «» (conditional) (in)dependence
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Sufficient conditions

Given S (randomised), C, w'F, and S — (4, then

Ci fw'F and S1Lw'F|C; = @ @ w'F

Idea

Optimise w such that

(a) dep (Cr,w'F) is high ~ HSIC
(b) dep (S, w'F'[Cy) is low ~ regression-based criterion
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Regression-based conditional independence criterion
If there exists a regression function r with w'F —r(Cy) 1 (S,CY),
then S L w'F|Cy.

Implementation
If we can find kernel ridge regression parameters (o, ) such that

dep( w'F -k, 9(C1) , (S,Ch) ) is low, then S 1L w'F|C}.
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Putting things together

Idea

Optimise w such that

(a) dep (Cy,w"F) s high
(b) dep (S, w'F|C) is low

Implementation

Optimise w and o, 0 such that

(a) HSIC(C1,w'F) is high
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Putting things together

Idea

Optimise w such that

(a) dep (Cy,w"F) s high
(b) dep (S, w'F|C) is low

Implementation (Non-linear MERLIN algorithm)

Optimise w and o, 0 such that

HSIC (C,w"F)
- HSIC( w'F -kirs(Cy) , (S,C1))

is being maximised.
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Neurofeedback experiment

S : instruction to up-/downregulate C {£1}
C1: y-bandpower in superior parietal cortex R
F . EEG electrode signals

Rchannels x time

SClI algorithm Non-linear MERLIN algorithm
test optimise w such that
S — Cy — v-bp (dipole;) S = Cp - y-bp(w'F)

for j=1,...,15028
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Neurofeedback experiment

S : instruction to up-/downregulate C {£1}
C1: y-bandpower in superior parietal cortex R
F . EEG electrode signals

Rchannels x time

SClI algorithm Non-linear MERLIN algorithm

Left hemisphere Right hemisphere Left hemisphere  Right hemisphere

Lateral view

Medial view

both find S — 4-bp (SPC) — ~v-bp (MPFC)
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Wrap-up & Outlook

observed linear mixture

linear mixing

causal neural variables

feed samples of S,y and F' to the non-linear MERLIN algorithm

~ recovery of the (non-linear) causal effect Cy = w'F

“A general idea to learn causally meaningful features?”
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