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Online material

• Peters, Janzing, Schölkopf: Elements of Causal Inference,
MIT Press 2017, free download as pdf at
https://mitpress.mit.edu/books/elements-causal-inference

• 5-day course at a Summer School 2014 in Finland:
https://ei.is.tuebingen.mpg.de/publications/janzing14

• 3 hours course (together with Bernhard Schölkopf) at the
Machine Learning Summer School 2013
http://mlss.tuebingen.mpg.de/2013/speakers.html

• 4 lectures on causality from Jonas Peters
https://stat.mit.edu/news/four-lectures-causality/
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1 Motivation: correlation versus causation

2 Formalizing causality: causal DAGs, functional causal
models, Markov conditions, do-operator, potential outcomes

3 Strong assumptions that enable causal discovery:

faithfulness, independence of mechanisms, additive noise,
linear non-Gaussian models

4 Macroscopic and microscopic causal models: consistent
coarse-graining of causal models

5 Causal inference in time series: Granger causality and its
limitations

6 Causal relations among individual objects: algorithmic
Markov conditions, analogy to probabilistic Markov conditions

(some applications in neuroscience are spread over the sections)
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1. Motivation:

correlation versus causation
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Why Causality?

Check out discussion sections for causal terminology sneaking in ;-)

Hippocampal activity in this study was correlated with amygdala

activity, supporting the view that the amygdala enhances explicit

memory by modulating activity in the hippocampus.

amygdala hippocampus explicit memory
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Drawing causal conclusions from statistical data

• challenging problem, ongoing research

• don’t expect an algorithm to which you feed your data and
the output is the causal structure

• applying existing algorithms in a sensible way requires deep
understanding of the problems of causal inference

• this course will provide a basis for this
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Can we infer causal relations from passive observations?

Study report less allergies for children who grew up without
dishwasher
Hesselmar et al, Pediatrics March 2015, Vol135 / Issue 3

image source: Wikipedia ‘Geschirrspülmaschine’, author Christian Giersing

Possible explanations:

• stronger exposure to microbes helps development of immune
system

• families without dishwasher tend to have different life style
also in other regards

⇒ Relation between statistical and causal dependences is tricky
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Statistical and causal statements...

...differ by slight rewording:

• “children growing up without dishwasher are less likely

to have allergies”

• “children growing up without dishwasher are less likely

to have allergies because of missing dishwasher”
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Statistical and causal statements...

...differ by slight rewording:

• “children growing up without dishwasher are less likely

to have allergies”

statistical statement:
can be tested by standard statistical tools

• “children growing up without dishwasher are less likely

to have allergies because of the missing dishwasher”

causal statement:
no standard methods available, the tutorial will give partial
answers, don’t expect simple ones!
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...this raises the question...

does statistics tell us something about causality at all?
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning.

• cases 1-3 can also occur simultaneously
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2. Formalizing causality:

causal DAGs, functional causal models, Markov conditions,
do-operator, potential outcomes
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Functional model of causality Pearl et al

• every node Xj is a function of its parents PAj and an
unobserved noise term Ej

• fj describes how Xj changes when parents are set to specific
values

Xj

PAj (Parents of Xj)

= fj(PAj ,Ej)

• all noise terms Ej are statistically independent (causal
sufficiency)

• which properties of P(X1, . . . ,Xn) follow?
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Causal Markov condition (4 equivalent versions) Lauritzen et al, Pearl

• existence of a functional model

• local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

X
j

non-descendants

descendants

parents of X
j

(information exchange with non-descendants involves parents)

• global Markov condition: describes all ind. via d-separation

• Factorization: P(X1, . . . ,Xn) =
∏

j P(Xj |PAj)

(every P(Xj |PAj) describes a causal mechanism)
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Metaphor for local Markov condition

Person

X

Father Mother

Brother

Grand-

mother

If someone knows the genes of X ’s parents, neither the genes of
the grandmother nor the genes of the brother contain additional
information about X

15



Idea of the global Markov condition

conditional independences stated by the local Markov condition
implies further conditional independences, e.g.

X Y Z W

X ⊥⊥W |Y

does not directly follow from the local Markov condition, although
it’s true

• intuitively reasonable: since the influence of X on W is
intermediated by Y , the dependence disappears for fixed
values of Y

• there are mathematical rules about which conditional
independences imply further independences
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Statistical independence vs. uncorrelatedness

• X ,Y independent: probabilities factorize, i.e.

p(x , y) = p(x)p(y).

(difficult to test)

• X ,Y uncorrelated: expectations factorize, i.e.

E[X · Y ] = E[X ] · E[Y ].

(easy to test: just compute empirical means)

independent implies uncorrelated but not vice versa
(note: physics literature is sometime sloppy about the difference)
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Reformulation of statistical independence

• factorizing probabilities: p(x , y) = p(x)p(y)

• knowing X does not change the distribution of Y :

p(y |x) = p(y)

(X contains no information about Y and vice versa)

• functions of X and Y are uncorrelated:

E[f (X ) · g(Y )] = E[f (X )] · E[g(Y )] ∀f , g
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Dependence without correlation

Let PX ,Y be uniform distribution on a circle:
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• uncorrelated because E[XY ] = 0 and E[X ] = 0,E[Y ] = 0 for
symmetry reasons

• X and Y are statistically dependent: knowing X reduces the
possible values Y from [−1, 1] to just two options
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d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones
are adjacent

A path q is said to be blocked by the set Z if

• q contains a chain i → m→ j or a fork i ← m→ j such
that the middle node is in Z , or

• q contains a collider i → m← j such that the middle node
is not in Z and such that no descendant of m is in Z .

Z is said to d-separate X and Y in the DAG G , formally

(X ⊥⊥ Y |Z )G

if Z blocks every path from a node in X to a node in Y .
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Example (blocking of paths)

X YZ U

path from X to Y is blocked by conditioning on U or Z or both
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Example (unblocking of paths)

X YZ U

W

• path from X to Y is blocked by ∅

• unblocked by conditioning on Z or W or both
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Example (blocking and unblocking of paths)

X YZ U

V W

several options for blocking all paths between X and Y :

(X ⊥⊥ Y |ZW )G

(X ⊥⊥ Y |ZUW )G

(X ⊥⊥ Y |VZUW )G
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Unblocking by conditioning on common effects

Berkson’s paradox (1946), selection bias. Example: X ,Y ,Z binary

X Y

Z = X or Y

• assume language skills and science skills are independent a
priori

• assume pupils go to high school if they have good skills in
science or languages

• then there is a negative correlation between science skills and
language skills in high school

24



Asymmetry with respect to inverting arrows

Reichenbach: The direction of time (1956)

X ⊥⊥ Y X 6⊥⊥ Y

X 6⊥⊥ Y |Z X ⊥⊥ Y |Z

25



Formalizing the difference between seeing and doing

• observational probabilities: p(y |x) probability for Y = y ,
given that we observed X = x

• interventional probabilities: p(y |do(x)) probability for
Y = y , given that we have set X to x .

confusing p(y |x) with p(y |do(x)) is the reason for most of the
common misconceptions about causality!

26



Pearl’s do operator

how to compute p(x1, . . . , xn|do(x
′
i )):

• write p(x1, . . . , xn) as

n∏

k=1

p(xk |parents(xk))

• replace p(xi |parents(xi )) with δxi ,x ′i

p(x1, . . . , xn|do(x
′
i )) =

∏

k 6=i

p(xk |parents(xk))δxi ,x ′i
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How to compute p(xj |do(xi))

marginalize over all k 6= j :

p(xj |do(x
′
i )) =

∑
p(x1, . . . , xn|do(x

′
i ))

=
∑∏

k 6=i

p(xk |parents(xk))δxi ,x ′i

(sum runs over all (x1, . . . , xj−1, xj+1, . . . , xn))
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Simple examples

X Y X

Z

Y X Y

1) 2) 3)

1 interventional and observational probabilities coincide (seeing
is the same as doing)

p(y |do(x)) = p(y |x)

2 intervening on x does not change y

p(y |do(x)) = p(y) 6= p(y |x)

3 intervening on x does not change y

p(y |do(x)) = p(y) 6= p(y |x)

29



Most important case: confounder correction

X

Z

Y

p(y |do(x)) =
∑

z

p(y |x , z)p(z) 6=
∑

z

p(y |x , z)p(z |x) = p(y |x)
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Potential Outcomes Framework

Ingredients:

31

(PW Holland, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)



Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,
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Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,

e. g. a patient group
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Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,

e. g. a patient group

• Treatment variable S : U → {t, c},
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Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,

e. g. a patient group

• Treatment variable S : U → {t, c},

e. g. assignment to treatment/control
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Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,

e. g. a patient group

• Treatment variable S : U → {t, c},

e. g. assignment to treatment/control

• Potential outcomes Y : U × {t, c} → R,
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Potential Outcomes Framework

Ingredients:

• Population U of units u ∈ U ,

e. g. a patient group

• Treatment variable S : U → {t, c},

e. g. assignment to treatment/control

• Potential outcomes Y : U × {t, c} → R,

e. g. survival times Yt(u) and Yc(u) of patient u
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Potential Outcomes Framework
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Potential Outcomes Framework

Fundamental problem of causal inference:
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

40

(PW Holland, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)



Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)

• Causal transience: can measure Yt(u) and Yc(u) sequentially

44

(PW Holland, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)



Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)

• Causal transience: can measure Yt(u) and Yc(u) sequentially

“Statistical solution”: Average Treatment Effect E[Yt]− E[Yc]
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)

• Causal transience: can measure Yt(u) and Yc(u) sequentially

“Statistical solution”: Average Treatment Effect E[Yt]− E[Yc]

• Can observe E[Yt|S = t] and E[Yc|S = c]

• which, when randomly assigning treatments, i. e. (Yt,Yc) ⊥⊥ S ,
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Potential Outcomes Framework

Fundamental problem of causal inference:

For each unit u we get to observe either Yt(u) or Yc(u) and hence
the treatment effect Yt(u)− Yc(u) cannot be computed.

Possible remedy assumptions:

• Unit homogeneity: Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2)

• Causal transience: can measure Yt(u) and Yc(u) sequentially

“Statistical solution”: Average Treatment Effect E[Yt]− E[Yc]

• Can observe E[Yt|S = t] and E[Yc|S = c]

• which, when randomly assigning treatments, i. e. (Yt,Yc) ⊥⊥ S ,

• is equal to E[Yt] and E[Yc].
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Potential Outcomes Framework

coffee

cancer

?
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Potential Outcomes Framework

• Split population U into
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• Split population U into

• ‘consumed little’: S(u) = �
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Potential Outcomes Framework

• Split population U into

• ‘consumed little’: S(u) = �

• ‘consumed lots’: S(u) = �

• Observe whether they suffer from cancer or not, Y ∈ {0, 1}
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Potential Outcomes Framework

• Split population U into

• ‘consumed little’: S(u) = �

• ‘consumed lots’: S(u) = �

• Observe whether they suffer from cancer or not, Y ∈ {0, 1}

• Assume older units have higher cumulative coffee

consumption as well as an increased risk of cancer
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Potential Outcomes Framework

coffee

cancer

age
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Potential Outcomes Framework

• Split population U into

• ‘consumed little’: S(u) = �

• ‘consumed lots’: S(u) = �

• Observe whether they suffer from cancer or not, Y ∈ {0, 1}

• Assume older units have higher cumulative coffee

consumption as well as an increased risk of cancer

• (Y�,Y�) 6⊥⊥ S
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Potential Outcomes Framework

• Split population U into

• ‘consumed little’: S(u) = �

• ‘consumed lots’: S(u) = �

• Observe whether they suffer from cancer or not, Y ∈ {0, 1}

• Assume older units have higher cumulative coffee

consumption as well as an increased risk of cancer

• (Y�,Y�) 6⊥⊥ S

• E[Y�|S = �] < E[Y�]
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Potential Outcomes Framework

• Split population U into

• ‘consumed little’: S(u) = �

• ‘consumed lots’: S(u) = �

• Observe whether they suffer from cancer or not, Y ∈ {0, 1}

• Assume older units have higher cumulative coffee

consumption as well as an increased risk of cancer

• (Y�,Y�) 6⊥⊥ S

• E[Y�|S = �] < E[Y�]

=⇒ E[Y�|S = �]− E[Y�|S = �] systematically overestimates the

effect of cumulative coffee consumption on cancer
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3. Strong assumptions that enable causal discovery:

faithfulness, independence of mechanisms, additive noise, linear
non-Gaussian models
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Causal discovery from observational data

Can we infer G from P(X1, . . . ,Xn)?

• MC only describes which sets of DAGs are consistent with P

• n! many DAGs are consistent with any distribution

X

Y Z

Z

X Y

Y

Z X

X

Z Y

Z

Y X

Y

X Z

• reasonable rules for preferring simple DAGs required
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Independence of mechanisms (ICM)

The conditionals P(Xj |PAj) in the causal factorization
P(X1, . . . ,Xn) =

∏n
j=1 P(Xj |PAj) represent independent

mechanisms in nature

• independent change: they change independently across data
sets

• no information: they contain no information about each
other, formalization by algorithmic information theory:
shortest description of P(X1, . . . ,Xn) is given by separate
descriptions of P(Xj |PAj)

(see Peters, Janzing, Schölkopf: Elements of Causal Inference for
historical overview)
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ICM for the bivariate case

• both P(cause) and P(effect|cause) may change across
environments

• but they change independently

• knowing how P(cause) has changed does not provide
information about if and how P(effect|cause) has changed

• knowing how P(effect|cause) has changed does not provide
information about if and how P(cause) has changed
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Independent changes in the real world: ball track

relation between initial position (cause) and speed (effect)
measured between two light barriers

Time 1

Position 

X

Y

• P(cause) changes if another child plays

• P(effect|cause) changes if the light barriers are mounted at a
different position

• hard to think of operations that change P(effect) without
affecting P(cause|effect) or vice versa
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Implications of ICM for causal and anti-causal learning

X Y X Y

causal learning:

predict effect from cause

anticausal learning:

predict cause from effect

• Causal learning:

predict properties of a molecule from its structure

• Anticausal learning: tumor classification, image
segmentation

Hypothesis: SSL only works for anticausal learning. Confirmed by
screening performance studies in the literature.
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Anti-causal prediction: why unlabelled points may help

• let Y be some class label e.g. y ∈ {male, female}

• Let X be a feature influenced by Y , e.g. height

• observe that PX is bimodal

• probably the two modes correspond to the two classes (idea of
cluster algorithms)

(can easily be confirmed by observing a small number of
labeled points)
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Causal prediction: why unlabelled points don’t help

• let Y be some class label of an effect y ∈ {sick , healthy}

• Let X be a feature influencing Y , e.g. a risk factor like blood
pressure

• observe that PX is bimodal

• no reasons to believe that the modes correspond to the two
classes
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Causal faithfulness as implication of ICM Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

• Idea: generic choices of parameters yield faithful distributions

• Example: let X ⊥⊥ Y for the DAG

X

Y Z

• not faithful, direct and indirect influence compensate
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Examples of unfaithful distributions

cancellation of direct and indirect influence in linear models

Y = αX + NY

Z = βX + γX + NZ

with independent X ,NY ,NZ

X and Z are independent if β + αγ = 0
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Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl:

Causal Markov condition + Causal faithfulness:

accept only those DAGs as causal hypotheses for which:

• all independences are true that are required by the Markov
condition

• only those independences are true

identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independences)
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Hidden Confounding and CI-based CI in Neuroimaging
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y

• Assume we find
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y

• Assume we find

• S 6⊥⊥ X
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y

• Assume we find

• S 6⊥⊥ X =⇒ existence of path between S and X w/o collider

• S 6⊥⊥ Y =⇒ existence of path between S and Y w/o collider

• S ⊥⊥ Y |X
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y

• Assume we find

• S 6⊥⊥ X =⇒ existence of path between S and X w/o collider

• S 6⊥⊥ Y =⇒ existence of path between S and Y w/o collider

• S ⊥⊥ Y |X =⇒ all paths between S and Y blocked by X

• Can rule out cases such as S → X ← h→ Y
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y
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∅
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• Assume we find

• S 6⊥⊥ X =⇒ existence of path between S and X w/o collider

• S 6⊥⊥ Y =⇒ existence of path between S and Y w/o collider

• S ⊥⊥ Y |X =⇒ all paths between S and Y blocked by X

• Can rule out cases such as S → X ← h→ Y

• Can formally prove that X indeed is a cause of Y
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Hidden Confounding and CI-based CI in Neuroimaging

• Randomised stimulus S

• Observe neural activity X and Y

 Estimate P
∅

S ,X ,Y

• Assume we find

• S 6⊥⊥ X =⇒ existence of path between S and X w/o collider

• S 6⊥⊥ Y =⇒ existence of path between S and Y w/o collider

• S ⊥⊥ Y |X =⇒ all paths between S and Y blocked by X

• Can rule out cases such as S → X ← h→ Y

• Can formally prove that X indeed is a cause of Y

=⇒ Robust against hidden confounding
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Application: Neural Dynamics of Reward Prediction
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Application: Neural Dynamics of Reward Prediction

S
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What can be said beyond Markov condition and faithfulness?
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Altitude)→ Y (Temperature)
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

Y (Solar Radiation)→ X (Temperature)
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Age)→ Y (Income)
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Hence...

• there are asymmetries between cause and effect apart from
those formalized by the causal Markov condition

• new methods that employ these asymmetries need to be
developed
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Database with cause effect pairs
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Idea of the website

• to evaluate novel causal inference methods

• inspire development of novel methods

• provide data where ground truth is obvious to non-experts (as
opposed to many data sets on economy, biology)

• should grow further (contains 105 pairs currently )

• ground truth discussed in: J. Mooij, J. Peters, D. Janzing,
J. Zscheischler, B. Schölkopf: Distinguishing cause from effect

using observational data: methods and benchmarks, Journal
of Machine Learning Research, 2016.
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Non-linear additive noise based inference

Hoyer, Janzing, Mooij, Peters,Schölkopf, 2008

• Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y = f (X ) + NY with NY ⊥⊥ X

• there will, in the generic case, be no model

X = g(Y ) + NX with NX ⊥⊥ Y ,

even if f is invertible! (proof is non-trivial)
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Note...

Y = f (X ,NY ) with NY ⊥⊥ X

can model any conditional PY |X

Y = f (X ) + NY with NY ⊥⊥ X

restricts the class of PY |X
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Intuition

• additive noise model from X to Y imposes that the width of
noise is constant in x .

• for non-linear f , the width of noise won’t be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an

additive noise model.

Implementation:

• Compute a function f as non-linear regression of Y on X , i.e.,
f (x) := E[Y |x ].

• Compute the noise

NY := Y − f (X )

• check whether NY and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)

• performed better than chance on real data with known ground
truth
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Extensive evaluation

Peters, Mooij, Janzing, Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 20014
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• if the algorithm decides in all cases, about 75% decisions are
right

• if it only decides in ‘the most obvious’ 20% of the cases, the
fraction gets close ot 100%
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Justification of the method

• we don’t claim that every causal influence can be described by
an additive noise model

• we only claim ‘if there is an additive noise model from one
direction but not the other the former is likely to be the
causal direction’

• if nature chooses Pcause and Peffect|cause independently it is
unlikely that the result is a joint distribution Peffect,cause that
admits an additive noise model from effect to cause
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Some theoretical support

Assume Y = f (X ) + NY with NY ⊥⊥ X

• Then PY and PX |Y are related:

∂2

∂y2
log p(y) = −

∂2

∂y2
log p(x |y)−

1

f ′(x)

∂2

∂x∂y
log p(x |y) .

⇒ ∂2

∂y2 log p(y) can be computed from p(x |y) knowing f ′(x0)
for one specific x0

• PX |Y almost determines PY

• We reject Y → X (provided that PY is complex) because we
assume that nature chooses Pcause and Peffect|cause

independently

Janzing, Steudel: Justifying additive noise-based causal inference via algorithmic information theory, OSID (2010)
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Inferring deterministic causality Daniusis, Janzing,... UAI 2010, Janzing et al. AI 2012

• Problem: infer whether Y = f (X ) or X = f −1(Y ) is the right
causal model

• Idea: if X → Y then f and the density pX are chosen
independently “by nature”

• Hence, peaks of pX do not correlate with the slope of f

• Then, peaks of pY correlate with the slope of f −1

y

x

f(x)

p(x)

p(y)
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Inferring causal structure via ICA

A linear acyclic SCM




X1

X2
...
Xd


 =




0 b12 . . . b1d
0 0 . . . b2d
...

...
. . .

...
0 0 . . . 0







X1

X2
...
Xd


+




S1
S2
...
Sd




with mutually independent components S1, . . . , Sd
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Inferring causal structure via ICA

A linear acyclic SCM




X1

X2
...
Xd


 =




0 b12 . . . b1d
0 0 . . . b2d
...

...
. . .

...
0 0 . . . 0







X1

X2
...
Xd


+




S1
S2
...
Sd




with mutually independent components S1, . . . , Sd

is closely linked to ICA (Independent Component Analysis) as per

X = B · X + S

⇐⇒ (Id− B) · X = S

⇐⇒ X = (Id− B)−1 · S
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Inferring causal structure via ICA

LiNGAM: Linear Non-Gaussian Acyclic Model X = BX + S

Identify B via two steps:
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Inferring causal structure via ICA

LiNGAM: Linear Non-Gaussian Acyclic Model X = BX + S

Identify B via two steps:

1 infer (Id− B) up to scaling and permutation via ICA
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Inferring causal structure via ICA
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Identify B via two steps:
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Non-Gaussianity!
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Inferring causal structure via ICA

LiNGAM: Linear Non-Gaussian Acyclic Model X = BX + S

Identify B via two steps:

1 infer (Id− B) up to scaling and permutation via ICA

Non-Gaussianity!

2 resolve scaling and permutation to obtain B
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Inferring causal structure via ICA

LiNGAM: Linear Non-Gaussian Acyclic Model X = BX + S

Identify B via two steps:

1 infer (Id− B) up to scaling and permutation via ICA

Non-Gaussianity!

2 resolve scaling and permutation to obtain B

Acyclicity!

114
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Bivariate Gaussian and Indeterminacies of ICA
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The same distribution can be described as

X = NX

Y = α · X + NY

or X = β · Y + NX

Y = NY

where NX and NY are suitable independent Gaussian distributions

115



Linear non-Gaussian models

Kano & Shimizu 2003

Theorem

Let X 6⊥⊥ Y . Then PX ,Y admits linear models in both directions,

i.e.,

Y = αX + NY with NY ⊥⊥ X

X = βY + NX with NX ⊥⊥ Y ,

if and only if PX ,Y is bivariate Gaussian

• if PX ,Y is non-Gaussian, there can be a linear model in at
most one direction.

• LINGAM: causal direction is the one that admits a linear
model
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

where S has mutually independent components
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

Confounded LiNGAM X = BX + S + H

where S has mutually independent components
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

Confounded LiNGAM X = BX + S + H

where S has mutually independent components
and H is group-wise stationary confounding
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

⇐⇒ X = (Id− B)−1S

Confounded LiNGAM X = BX + S + H

where S has mutually independent components
and H is group-wise stationary confounding
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

⇐⇒ X = (Id− B)−1S

Confounded LiNGAM X = BX + S + H

⇐⇒ X = (Id− B)−1(S + H)

where S has mutually independent components
and H is group-wise stationary confounding
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LiNGAM and confounding-robust ICA

LiNGAM X = BX + S

⇐⇒ X = (Id− B)−1S

Confounded LiNGAM X = BX + S + H

⇐⇒ X = (Id− B)−1(S + H)

where S has mutually independent components
and H is group-wise stationary confounding

 coroICA allows to identify the confounded LiNGAM model
 and accounts for dependencies due to H

 if H is group-wise stationary
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4. Macroscopic and microscopic causal models:

consistent coarse-graining of causal models
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Models at different levels

Fine-grained Coarse-grained

Disease

Traffic
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What can go wrong? Cholesterol and Heart Disease

diet
LDL

HDL
Heart Disease

−

+
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What can go wrong? Cholesterol and Heart Disease

diet Total Chol. Heart Disease
−

+

diet
LDL

HDL
Heart Disease

−

+
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What can go wrong? Cholesterol and Heart Disease

diet Total Chol. Heart Disease
−

+

⇑

diet
LDL

HDL
Heart Disease

−

+

Incorrectly ‘transforming’ the model can lead to problems.
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Limited ability to observe breaks causal reasoning

C1

C2 Ci causal variables

F1 F2 F3 observed linear mixture

linear mixing
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Transformations of causal models

MX MY

X1

X2

X3

X4

X5

X6

τ1(X) τ2(X)

τ3(X)

τ

?
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Causal Models as Posets of Distributions

“Normal” Probabilistic Model:

MX : θ 7→ Pθ

Pθ
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Causal Models as Posets of Distributions

“Normal” Probabilistic Model:

MX : θ 7→ Pθ

Pθ

Causal Model:

MX : θ 7→ {P
do(i)
θ : i ∈ IX}

IX is set of interventions.

P
∅

θ

P
do(i1)
θ

P
do(i2)
θ

P
do(i3)
θ
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Causal Models as Posets of Distributions

P
∅

X

P
do(A=0)
X

P
do(A=0,C=0)
X

P
do(C=0)
X
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Causal Models as Posets of Distributions

P
∅

X

P
do(A=0)
X

P
do(A=0,C=0)
X

P
do(C=0)
X

IX has partial ordering structure
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Causal Models as Posets of Distributions

P
∅

X

P
do(A=0)
X

P
do(A=0,C=0)
X

P
do(C=0)
X

IX has partial ordering structure

MX implies the poset of distributions PX :=
({

P
do(i)
X : i ∈ IX

}
,≤X

)
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Transformations of Structural Equation Models

Suppose we are givenMX and a ‘measuring device’ τ : X → Y
X ∼ PX an r.v. in X =⇒ τ(X ) ∼ Pτ(X ) is an r.v. in Y

τ : PX → Pτ(X ) =
({

P
i
τ(X ) : i ∈ IX

}
,≤X

)

τPX Pτ(X )
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Transformations of Structural Equation Models

Suppose we are givenMX and a ‘measuring device’ τ : X → Y
X ∼ PX an r.v. in X =⇒ τ(X ) ∼ Pτ(X ) is an r.v. in Y

τ : PX → Pτ(X ) =
({

P
i
τ(X ) : i ∈ IX

}
,≤X

)

τPX Pτ(X )

Does there exist an SEMMY with PY = Pτ(X )?

If so, thenMY will agree with our observations ofMX via τ .
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In What Sense is Causal Reasoning Preserved?

Does there exist an SEMMY with PY = Pτ(X )?

If so, thenMY will agree with our observations ofMX via τ

...
...

...

At Bt Ct

At+1 Bt+1 Ct+1

At+2 Bt+2 Ct+2

...
...

...

τ

A B CMX

MY

137



In What Sense is Causal Reasoning Preserved?

Does there exist an SEMMY with PY = Pτ(X )?

If so, thenMY will agree with our observations ofMX via τ

...
...

...

AtAt Bt Ct

At+1At+1 Bt+1 Ct+1

At+2At+2 Bt+2 Ct+2

...
...

...

τ

AA B CMX

MY
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In What Sense is Causal Reasoning Preserved?

Does there exist an SEMMY with PY = Pτ(X )?

If so, thenMY will agree with our observations ofMX via τ

...
...

...

At Bt CtCt

At+1 Bt+1 Ct+1Ct+1

At+2 Bt+2 Ct+2Ct+2

...
...

...

τ

A B CCMX

MY
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In What Sense is Causal Reasoning Preserved?

Does there exist an SEMMY with PY = Pτ(X )?

If so, thenMY will agree with our observations ofMX via τ

...
...

...

AtAt Bt CtCt

At+1At+1 Bt+1 Ct+1Ct+1

At+2At+2 Bt+2 Ct+2Ct+2

...
...

...

τ

AA B CCMX

MY

Compositions of interventions are preserved!
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Definition (Exact Transformations between SEMs)

LetMX andMY be SEMs and τ : X → Y be a function. We say
MY is an exact τ -transformation ofMX if there exists a
surjective order-preserving map ω : IX → IY such that

P
i
τ(X ) = P

do(ω(i))
Y ∀i ∈ IX

Theorem

The following diagram commutes:

PX P
do(i)
X P

do(j)
X

PY P
do(ω(i))
Y P

do(ω(j))
Y

do(i) do(j)

do(ω(i)) do(ω(j))

τ τ τ

141



Transformations for Pragmatic Causal Models

• Marginalisation of variables

X1

X2

X3

MX
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Transformations for Pragmatic Causal Models

• Marginalisation of variables

X1

X2

X3

MX

subsystemMY
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Transformations for Pragmatic Causal Models

• Marginalisation of variables

• Micro- to macro-level and aggregate features

MX :
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Transformations for Pragmatic Causal Models

• Marginalisation of variables

• Micro- to macro-level and aggregate features

MX :

Ŵ ẐMY :
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Transformations for Pragmatic Causal Models

• Marginalisation of variables

• Micro- to macro-level and aggregate features

• Stationary behaviour of dynamical processes

...
...

...
...

...
...

...
...

do(i)
dynamicMX

X 1
t X 2

t X 1
t X 2

t
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Transformations for Pragmatic Causal Models

• Marginalisation of variables

• Micro- to macro-level and aggregate features

• Stationary behaviour of dynamical processes

...
...

...
...

...
...

...
...

do(i)
dynamicMX

stationaryMY Y1 Y2 Y1 Y2

do(ω(i))

τ τ

X 1
t X 2

t X 1
t X 2

t
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5. Causal inference in time series:

Granger causality and its limitations
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Granger Causality

Simplified Definition: One stochastic process X is causal to a
second Y if the autoregressive predictability of the second process
at a given time point is improved by including measurements from
the past of the first, i. e. if

PredAcc[Yt |Y<t ] < PredAcc[Yt |Y<t ,X<t ]

(not by C Granger)
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Granger Causality

X :

Z :

Y :

Xt+1

Zt+1

Yt+1

Xt+2

Zt+2

Yt+2

Xt+3

Zt+3

Yt+3

Xt+4

Zt+4

Yt+4
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Granger Causality

X :

Z :

Y :

Xt+1

Zt+1

Yt+1

Xt+2

Zt+2

Yt+2

Xt+3

Zt+3

Yt+3

Xt+4

Zt+4

Yt+4

PredAcc[Yt |Y<t ] < PredAcc[Yt |Y<t ,X<t ]

Granger causality erroneously infers causal influence from X to Y !
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Granger Causality

Simplified Definition: One stochastic process X is causal to a
second Y if the autoregressive predictability of the second process
at a given time point is improved by including measurements from
the past of the first, i. e. if

PredAcc[Yt |Y<t ] < PredAcc[Yt |Y<t ,X<t ]

(not by C Granger)
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Granger Causality

Simplified Definition: One stochastic process X is causal to a
second Y if the autoregressive predictability of the second process
at a given time point is improved by including measurements from
the past of the first, i. e. if

PredAcc[Yt |Y<t ] < PredAcc[Yt |Y<t ,X<t ]

(not by C Granger)

Granger’s Definition: One stochastic process X is causal to a
second Y if the predictability of the second process at a given time
point is worsened by removing past measurements of the first from
the universe’s past, i. e. if

PredAcc[Yt |m<t ] > PredAcc[Yt |m<t\X<t ]

(by C Granger)
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Granger Causality

X :

Y :

Xt+1

Yt+1

Xt+2

Yt+2

Xt+3

Yt+3

Xt+4

Yt+4
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Granger Causality

X :

Y :

Xt+1

Yt+1

Xt+2

Yt+2

Xt+3

Yt+3

Xt+4

Yt+4

PredAcc[Yt |m<t ] 6> PredAcc[Yt |m<t\X<t ]

Granger causality fails to predict the effects of interventions!
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Granger works under Markov and faithfulness

Assumptions:

• no hidden common causes

• no instantaneous effects Yt

Zt

Xt

Yt

Zt

Xt Xt+1

Yt+1

Zt+1

Yt+2

Zt+2

Xt+2 Xt+3

Yt+3

Zt+3

Xt+4

Yt+4

Zt+4

Xt+4

Yt+4

Zt+4

e.g. Theorem 10:3 in Peters, Janzing, Schölkopf: Elements of

Causal Inference

If the distribution is Markov and faithful relative to the causal
DAG,
then there exists arrows from Y<t to Xt if and only if Y
Granger-causes X , i.e. Xt 6⊥⊥ Y<t |m<t\Y<t
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6. Causal relations among individual objects

algorithmic Markov conditions, analogy to probabilistic Markov
conditions

causal conclusions in real life are not always based on statistics!
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these 2 objects are similar...

– why are they so similar?
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Conclusion: common history

similarities require an explanation
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what kind of similarities require an explanation?

here we would not assume that anyone has copied the design...

160



..the pattern is too simple

• similarities require an explanation only if the pattern is
sufficiently complex
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consider a binary sequence

Experiment:

2 persons are instructed to write down a string with 1000 digits

Result:

Both write 1100100100001111110110101010001...
(all 1000 digits coincide)
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the naive statistician concludes

“There must be an agreement between the subjects”

correlation coefficient 1 (between digits) is highly significant for
sample size 1000 !

• reject statistical independence
• infer the existence of a causal relation
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another mathematician recognizes...

11.0010010000111111011010101001... = π

• subjects may have come up with this number independently
because it follows from a simple law

• superficially strong similarities are not necessarily significant if
the pattern is too simple
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How do we measure simplicity versus complexity of
patterns / objects?
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Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solomonoff 1964)

of a binary string x

• K(x) = length of the shortest program with output x (on a
Turing machine)

• interpretation: number of bits required to describe the rule
that generates x

neglect string-independent additive constants; use
+
= instead

of =

• strings x , y with low K (x), K (y) cannot have much in
common

• K (x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity

• K (y |x): length of the shortest program that generates y from
the input x .

• number of bits required for describing y if x is given

• K (y |x∗) length of the shortest program that generates y from
x∗, i.e., the shortest compression x .

• subtle difference: x can be generated from x∗ but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

• I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗)

+
= K (y)− K (y |x∗)

• Interpretation: number of bits saved when compressing x , y

jointly rather than compressing them independently
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Algorithmic mutual information: example

I(        :        ) = K(       )    
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Analogy to statistics:

• replace strings x , y (=objects) with random variables X ,Y

• replace Kolmogorov complexity with Shannon entropy

• replace algorithmic mutual information I (x : y) with statistical
mutual information I (X ;Y )
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Causal Principle

If two strings x and y are algorithmically dependent then either

x y x

z

y x y

1) 2) 3)

• every algorithmic dependence is due to a causal relation

• algorithmic analog to Reichenbach’s principle of common
cause

• distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Schölkopf IEEE TIT 2010
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conditional algorithmic mutual information

• I (x : y |z) = K (x |z) + K (y |z)− K (x , y |z)

• Information that x and y have in common when z is already
given

• Formal analogy to statistical mutual information:

I (X : Y |Z ) = S(X |Z ) + S(Y |Z )− S(X ,Y |Z )

• Define conditional independence:

I (x : y |z) ≈ 0 :⇔ x ⊥⊥ y |z
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Algorithmic Markov condition

Postulate [DJ & Schölkopf IEEE TIT 2010]

Let x1, ..., xn be some observations (formalized as strings) and G

describe their causal relations.
Then, every xj is conditionally algorithmically independent of its
non-descendants, given its parents, i.e.,

xj ⊥⊥ ndj |pa
∗
j
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Equivalence of algorithmic Markov conditions

Theorem

For n strings x1, ..., xn the following conditions are equivalent

• Local Markov condition:

I (xj : ndj |pa
∗
j )

+
= 0

• Global Markov condition:

R d-separates S and T implies I (S : T |R∗)
+
= 0

• Recursion formula for joint complexity

K (x1, ..., xn)
+
=

n∑

j=1

K (xj |pa
∗
j )

→ another analogy to statistical causal inference
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Algorithmic model of causality

Given n causality related strings x1, . . . , xn

• each xj is computed from its parents paj and an unobserved
string uj by a Turing machine T

• all uj are algorithmically independent

• each uj describes the causal mechanism (the program)
generating xj from its parents

• uj is the analog of the noise term in the statistical functional
model
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Algorithmic model of causality implies Markov condition

Theorem

If x1, . . . , xn are generated by an algorithmic model of causality

according to the DAG G then they satisfy the 3 equivalent

algorithmic Markov conditions.
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Causal inference for single objects

3 carpets

conditional independence A ⊥⊥ B |C
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Take home messages

• Graphical causal models do not solve the hard causal
problems, but they provide a clear framework to address them

• Subject to strong assumptions, causal structure can also be
inferred from passive observation

• However, machine learning is used to rely on strong
assumptions
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Thank you for your attention!

note also the following competition:
https://causeme.uv.es/neurips2019/
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