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research in causal inference.



Causal challenges in dynamical systems are different to those on iid data.

• With no unobserved process, it is well-known that structure is identifiable.

• Here: Different graphs cannot be Markov equivalent.

• This is because time helps to orient the edges.
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(Meek 2014; Mogensen and Hansen 2018)



Overview of final methods

File Description Edgescore Datasets

ridge.py

Ridge regression ∆Xt ≈ f (Xt−1).

Bootstrap sampling,

aggregation by quantiles.

Absolute values of

regression coefficients
Climate data

varvar.py

OLS regression Xt ≈ f (Xt−1,...,t−lags) or

iterative Lasso Xt − f (Xt−1) ≈ f (Xt−2).

Bootstrap sampling,

random number of lags.

Absolute values of

regression coefficients

Weather data,

VAR models

selvar.f

Var model with variable and lag selection.

OLS greedy search,

p-values by likelihood-ratio testing.

p-value non-linear data
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• We also tried: PC-type algorithms, neural-networks with input-perturbations, state space

models, residual entropy estimation, . . .



Ridge regression and bootstrap quantiling

Ridge and bootstrap quantiling

Target Yt = Xt − Xt−1, Regressor Xt−1

for i ∈ {1, . . . ,N} do:

Draw bootstrap samples Y i and X i

Perform Ridge regression Y i ∼ X i , obtain estimate Âi ∈ R
d×d .

Collapse Â1, . . . , ÂN into one Â ∈ R
d×d by entrywise taking the qth quantile.

return abs(Â) as scores for causal links
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Ridge and bootstrap quantiling

Target Yt = Xt − Xt−1, Regressor Xt−1

for i ∈ {1, . . . ,N} do:

Draw bootstrap samples Y i and X i

Perform Ridge regression Y i ∼ X i , obtain estimate Âi ∈ R
d×d .

Collapse Â1, . . . , ÂN into one Â ∈ R
d×d by entrywise taking the qth quantile.

return abs(Â) as scores for causal links

• Choosing q large corresponds to

searching for largest local effect.

• Choosing q small corresponds to

large minimal effect.

Linear regression simulation study
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Correlation does not imply causation.
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• Consider iid observations from the well-known linear acyclic model
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• Regress Xj onto Xi , for all pairs j 6= i , and obtain the OLS regression coefficient

b̂i→j =
ĉov(Xi ,Xj)

ĉov(Xi ,Xi )
.
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where E ∼ N (0, σ2I ).

• Regress Xj onto Xi , for all pairs j 6= i , and obtain the OLS regression coefficient

b̂i→j =
ĉov(Xi ,Xj)

ĉov(Xi ,Xi )
.

• Compare the AUC when scoring edges Xi → Xj either by the

(a) absolute regression coefficients |b̂i→j |, or by the

(b) corresponding absolute t-test statistics |t̂i→j |.
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From absolute coefficients to t-test statistics

• |b̂i→j |

• |t̂i→j | = |b̂i→j |

√
v̂ar(Xi )

v̂ar(Xj)

√
(n − 2)

(1− ρ̂2Xi ,Xj
)

(pairwise regression)



From absolute coefficients to t-test statistics
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• |t̂i→j | = |b̂i→j |

√
v̂ar(Xi )

v̂ar(Xj)

√
(n − 2)

(1− ρ̂2Xi ,Xj
)

(pairwise regression)

• |t̂i→j | = |b̂i→j |
ŝre(Xi |X\i )

ŝre(Xj |X\j)

√
(n − d)

(1− ρ̂2
Xi ,Xj |X\{i,j}

)
(multivariate regression)
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• Consider, as before, X = BX + E with E ∼ N (0, diag(σ2
1, . . . , σ

2
d)).

• This time (somewhat artificially) ensure equal marginal variances

var(Xi ) = c , i = 1, . . . , d ,

by rescaling rows of B and the σ2
i appropriately.
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• This time (somewhat artificially) ensure decreasing marginal variances,

∀i < j : var(Xi ) ≥ var(Xj),

by rescaling rows of B and the σ2
i appropriately.
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• Only difference: Flipped edge between the two drivers.
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• The Structural Hamming Distance (SHD) between the two is constant at 1 or 2.

• The AUC (as calculated in the competition) increases quickly as p grows.

• The number of incorrectly inferred interventional distributions (SID, see Peters

and Bühlmann 2015) is 2(p − 1).
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• The AUC (as calculated in the competition) increases quickly as p grows.

• The number of incorrectly inferred interventional distributions (SID, see Peters

and Bühlmann 2015) is 2(p − 1).

• The following distributions are incorrectly inferred (for fixed c ∈ R):

P
do(DB=c)
DA

, P
do(DA=c)
DB

∀k ∈ {1, . . . , p − 2} : P
do(DA=c)
Yk

, P
do(DB=c)
Yk



• Consider the case with p = 3, linear assignments and gaussian noise. The ’true’

model is G1.
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• Consider the case with p = 3, linear assignments and gaussian noise. The ’true’

model is G1.

• The distribution of Y under do(DB = c) depends on the graph it is calculated

under.
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• The estimated distribution can be arbitrarily wrong with just a single edge flipped.
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• Open question: What does it mean for two causal systems to be ’close’ to one

another?

• In the competition, AUC was used to measure ’closeness’ of graphs.

• For inferring causal structures, we argue that it may not be sufficient to consider

the AUC.

• Take-home message: Inferring causal structures is difficult, but:

• If you are interested in an overall structure, the AUC is a good measure.

• If you care about interventional distributions, it is not sufficient to consider only the

AUC.



Final remarks

• Linear regression can beat ‘causality tailored’ and non-linear approaches.

• When is covariance a good indicator of causality?

• The task is only as causal as the score function!

https://www.math.ku.dk/english/research/spt/cocala/
https://github.com/sweichwald/CoCaLa-CauseMe-NeurIPS-competition


Final remarks

• Linear regression can beat ‘causality tailored’ and non-linear approaches.

• When is covariance a good indicator of causality?

• The task is only as causal as the score function!

Thanks to the organizers!

CoCaLa: https://www.math.ku.dk/english/research/spt/cocala/

Code: https://github.com/sweichwald/CoCaLa-CauseMe-NeurIPS-competition

Ø Thanks also for accomodating our telepresence which saved ∼28500 kg in CO2 emissions.

https://www.math.ku.dk/english/research/spt/cocala/
https://github.com/sweichwald/CoCaLa-CauseMe-NeurIPS-competition

