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Observables may not be (meaningful) Causal Entities #
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linear mixing

causal entities

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 5



COPENHAGEN CAUSALITY LAB

UNIVERSITY OF COPENHAGEN

Observables may not be (meaningful) Causal Entities #

F F; F;  observed rgb pixel values
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Challenges

Process:

1 Autocorrelation ° °
2 Time delays ° °
3 Nonlinear dependencies i N
4 Chaotic state-dependence

5 Different time scales

6 Noise distributions

Data:

7 Variable extraction

8 Unobserved variables
9 Time subsampling

10 Time aggregation

11 Measurement errors

12 Selection bias
13 Discrete data
14 Dating uncertainties

Computational/statistical:

.

15 Sample size
16 High dimensionality
17 Uncertainty estimation
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Runge et al. (2019). Inferring causation from time series in Earth system sciences. Nature Communications.
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Variable Transformations may link Causal Reasoning at Different Scales

fine-grained coarse-grained
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Causal Consistency of Structural Equation Models

auai.org/uai2017/proceedings/papers/11.pdf

Paul Rubenstein, S Weichwald, S Bongers, JM Mooij,
D Janzing, M Grosse-Wentrup, B Scholkopf

Rubenstein®, Weichwald®, et al (2017). Causal Consistency of Structural Equation Models. Uncertainty in Artificial Intelligence. Sebastian Weichwald — Causal Models under Variable Transformations — Slide 8
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Causal Models as Posets of Distributions
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“Normal” Probabilistic Model:

MxiQHPg

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 9



UNIVERSITY OF COPENHAGEN COPENHAGEN CAUSALITY LAB

“Normal” Probabilistic Model: Causal Model:

MxiQHPg MxieH{Pgo(i)iiGIx}
Iy is set of interventions.
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Causal Models
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Causal Models

do(A=0,c=0) .~~
X o’;
/l\ S~

Ix has partial ordering structure
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Causal Models

do(A=0,c=0) .~~
IP)X ® );\

Ix has partial ordering structure

My implies the poset of distributions Py := ({Pio(i) S IX} , Sx)

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 10
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Structural Causal Models

Mx = (Sx, Ix, Pk,)
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Structural Causal Models

X1:E
Sy = ‘

Mx = (Sx, Ix, Pk,) X=X+ E
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Structural Causal Models

Mx = (Sx, Ix, Pk,)

X1 =E
Xo=X1+E
e Ix = {®, do(X; = 5), do(X, = 3)}
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Structural Causal Models

Xi=E

Mx = (Sx, Ix, Pk,) X=X+ E
o Iy = {@, do(X; = 5), do(X, = 3)}

e E~N(0,1)
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Structural Causal Models

X1:E1

Mx = (Sx, Ix, Pk,) X=X+ E
o Iy = {@, do(X; = 5), do(X, = 3)}

e F~N(0,
observational
P§~Nmn

P%~N@D
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Structural Causal Models

X1 = E]
[ ] X e
My = (Sx, Ix, Pry) X=X+ b
e Jx ={@, do(X; =5), do(X, =3)}
e F~N(0,
observational intervention on X

do(X:=
P? ~N(0,1) PP =5

P?(z ~ N(0,2) P;j(j(x1=5) ~ N(5,1)
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Structural Causal Models

X1 = E]
[ ] X =
Mx = (Sx, Ix, Pry) X=X+kh
e Jx ={@, do(X; =5), do(X, =3)}
e F~N(0,
observational intervention on X; intervention on X,
do(X;= do(Xp=
P? ~N(0,1) PP =5 P~ N(0,7)
D do(Xi= do(X,=
PXz N(O, 2) ij( 1=5) - N(S, 1) ij( 2=3) =3
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causal discovery?

observations

(BP0 i€ 1y 2 L)

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 12
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A=1)B = 2C+\3/2N4 - V2N, A=h  +N4
= V3Np B=1hA+ C+?/Np B=h+C+Ng
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A=15B—1hCH+\/Ny = V2N,
= V3Ng B =1pA+ C+\/Ng
C=1:B +V2/Ne = Ne

COPENHAGEN CAUSALITY

A=h +Nj
B:h+C+NB
C= NC

~» 3 models inducing the same observational yet different interventional distributions
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A=1)B = 2C+\3/2N4 - V2N, A=h  +N4
= V3Np B=1hA+ C+?/Np B=h+C+Ng
C=1/B +2/NC = Ne €= Ne

~» 3 models inducing the same observational yet different interventional distributions

fitting observational data well is not enough #
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NEEDED: ALGEBRA OF DOING

Available:algebra of seeing

e.g., What is the chance it rained
if we see the grass wet?

P(rain)
P(wet) }

P (rain | wet) =? {= P (wet | rain)
Needed: algebra of doing

e.g., What is the chance it rained

if we make the grass wet?
P (rain \do(wet)) =? {= P (rain)}

Pearl (2009). Causality: Models, Reasoning, and Inference. Sebastian Weichwald — Causal Models under Variable Transformations — Slide 14
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The Three Layer Causal Hierarchy

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? ‘What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
2. Intervention Doing What if? ‘What if I take aspirin, will my
P(yldo(z), z) Intervening What if T do X7 headache be cured?
What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
Ply.|2',y") Retrospection Was it X that caused Y7 stopped my headache?
What if T had acted Would Kennedy be alive had
differently? Oswald not shot him?
What if I had not been smok-
ing the past 2 years?

Pearl (2018). Theoretical Impediments to Machine Learning — With Seven Sparks from the Causal Revolution. WSDM 2018, Sebastian Weichwald — Causal Models under Variable Transformations — Slide 15
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The Three Layer Causal Hierarchy
presupposes that X and Y are the right variables

Level Typical Typical Questions Examples
(Symbol) Activity
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P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
2. Intervention Doing What if? ‘What if I take aspirin, will my
P(yldo(z), z) Intervening What if T do X7 headache be cured?
What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
Ply.|2',y") Retrospection Was it X that caused Y7 stopped my headache?
What if T had acted Would Kennedy be alive had
differently? Oswald not shot him?
What if I had not been smok-
ing the past 2 years?
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Needed: Understanding of SCMs under Variable Transformations
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Needed: Understanding of SCMs under Variable Transformations

Suppose we are given My and a transformation7: X — Y
X~Pxanrv.inX = 7(X) ~Pyx isanrv.inY
T:Px — Prx) = ({PL(X) D IE€ fx}, Sx)

Py T Prx)
>

Does there exist an SCM My with Py = P (x)?

If so, then My will agree with our observations of My via 7.

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 16
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What can go wrong?
Xi X,
My : N
X3
X1 = E]
SX = Xz = Ey_
X3=X1+X5+ E3

E, = 1; Ey, E5 arbitrary

do(@)
I)( = dO(X1 = O)
dO(X1 =0,X; = 0)

Sebastian Weichwald — Causal Models under Variable Transf
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What can go wrong?
X1 X2 Y1 = X1 + XZ
My : N My : |
X; Y2=X3
X1 = E]
SX = Xz = Ey_
X3=X1+X5+ E3

E, = 1; Ey, E5 arbitrary

do(@)
I)( = dO(X1 = O)
dO(X1 =0,X; = 0)
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What can go wrong?

Xi X5 Yi=X1+X;
My N My : |
X; Y2=X3
e Vi=E+E
= +
SX: X2:E2 SY: 1 1 g
Yo=Y+ E

X3=X1+X5+ E3
E, = 1; Ey, E5 arbitrary

do(@)
I)( = dO(X1 = O)
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What can go wrong?

Xi X5 Yi=Xi+ X,
My : N My !
X; Y2=X3
=5 Yi=E+E
=E +
SX = Xz = Ey_ SY = 1 1 ’
Yo=Y+ E;
X3 = X1 + Xz + E3
E, = 1; Ey, E5 arbitrary Eq, E>, E5 as before

do(@)
I)( = dO(X1 = O)
dO(X1 =0,X; = 0)
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What can go wrong?

Xi X5 Yi=X1+ X
My : N My : !
X; Y2=X3
x=h Yi=E+E
=E +
Sx=1{X%=E Sy=¢ 17177
Yo=Y+ E;
X3 = X1 + Xz + E3
E, = 1; Ey, E5 arbitrary E1, E,, E5 as before
do(2) do(2)

IX: dO(X1 :O) IY:
dO(X1 =0,X; = 0)
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=E +
Sx=1{X%=E Sy=¢ 17177
Yo=Y+ E;
X3 = X1 + Xz + E3
E, = 1; Ey, E5 arbitrary E1, E,, E5 as before
do(2) do(2)

Ix = {do(X; =0) Iy ={do(Y:=1)
dO(X1 = O, X2 = 0)
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What can go wrong?

X1 X2 Y1 = X1 + XZ
My : N My : |
X3 Y2=X3
=k Y, = E +E
=E +
SX = Xz = Ey_ SY = ! ! g
Y2 = Y1 + E3
X3 = X1 + Xz + E3
E, = 1; Ey, E5 arbitrary Eq, E>, E5 as before
do(2) do(@)
IX: dO(X1 :O) IY: dO(Y] :1)
dO(X1 =0,X; = 0) dO( Y = O)
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What can go wrong?
Xq X5 Yi=Xi+X;

My : N My !
X; Y2=X3
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What can go wrong?
Xq X5 Yi=Xi+X;

My : N My !
X; Y2=X3

dO(X1 ZO,XZZO)

Py — P X

do(X;=0)
X ] P
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What can go wrong?
Xi X5 Yi=Xi+X;

My : N My : !
X3 Y,=X3

PX Pf(O(X] 20) P()TI(O()G ZO,XZZO)
T T
P vy P()i/o( Yi 21)
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My : N My : !
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T T T
Py deo(n:n deom:o)
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What can go wrong?
Xi X5 Yi=Xi+X;

My : N My : !
X3 Y,=X3

PX Pf(O(X] 20) P()TI(O()G ZO,XZZO)
T T T
Py Pt)j/o(ﬂ:]) IP)C:/O(YFO)
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What can go wrong?
Xi X5 Yi=Xi+X;

My : N My : !
X3 Y,=X3

dO(X1 ZO,XZZO)

Py —> P i

do(X;=0)
X ] P

PY Pt)d/o(ﬂ:]) X IP)c)i/o(Y1=0)
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What can go wrong?
Xi X5 Yi=Xi+X;

My : N My : !
X3 Y,=X3

dO(X1 ZO,XZZO)

Py —> P i

do(X;=0)
X ] P

PY Pt)d/o(ﬂ:]) X IP)c)i/o(Y1=0)

\_/
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Exact Transformations ensure Causally Consistent SCMs
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Let My = (SX, I, PEX) be an SCM over variables X = (X; : i € Ix) with

@ structural equations Sy;
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Exact Transformations ensure Causally Consistent SCMs
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Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
@ restricted partially ordered set (Zx, <x) of interventions;

©® exogenous variables distributed according to Pg,.
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Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
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Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
@ restricted partially ordered set (Zx, <x) of interventions;
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Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
@ restricted partially ordered set (Zx, <x) of interventions;

©® exogenous variables distributed according to Pg,.
Let My = (Sy, Iy, Pg,) be another SCM and 7: X — V.

My is an exact r-transformation of My if

i _ pdo(w(i)) ;

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 18
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Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
@ restricted partially ordered set (Zx, <x) of interventions;

©® exogenous variables distributed according to Pg,.
Let My = (Sy, Iy, Pg,) be another SCM and 7: X — V.
My is an exact r-transformation of My if
. d - .
o =By viely

for a surjective order-preserving map w : Iy — Iy.

Sebastian Weichwald — Causal Models under Variable Transformations — Slide 18



UNIVERSITY OF COPENHAGEN COPENHAGEN CAUSALITY LAB

Exact Transformations ensure Causally Consistent SCMs

Let Mx = (Sx, Zx,Pg,) be an SCM over variables X = (X; : i € Ix) with
@ structural equations Sy;
@ restricted partially ordered set (Zx, <x) of interventions;

©® exogenous variables distributed according to Pg,.
Let My = (Sy, Iy, Pg,) be another SCM and 7: X — V.

My is an exact r-transformation of My if

i _ pdo(a(i) :
for a surjective order-preserving map w : Iy — Iy.

— M and My are causally consistent
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Causal Consistency

do(1) _ do())

Py > plow) - PV

T l T l T
do(w(i)) _do(w()))

Py Pc)j,o(w(’)) N P?/O(w(j))
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Elementary Properties of Exact Transformations

Lemma

The identity mapping is an exact transformation.

id

My ——— My

Lemma

Exact transformations are transitively closed.

T 72
MX E— My B MZ

7201
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Few Transformations yield Causally Consistent Representations #

® Marginalisation of variables
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Few Transformations yield Causally Consistent Representations #

® Marginalisation of variables

subsystem My
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Few Transformations yield Causally Consistent Representations #

® Marginalisation of variables

® Micro- to macro-level and aggregate features
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Few Transformations yield Causally Consistent Representations #

® Marginalisation of variables
® Micro- to macro-level and aggregate features

® Stationary behaviour of dynamical processes

dynamic My
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Few Transformations yield Causally Consistent Representations #

® Marginalisation of variables
® Micro- to macro-level and aggregate features

® Stationary behaviour of dynamical processes

23
>
S

dynamic My

stationary My 0‘@ m@—)@
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

Caka .
Copagn? Ob#e®@ 7 @sweichwald
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

® Variable Transformations may break Causal Reasoning /

Caka .
Copagn? Ob#e®@ 7 @sweichwald
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

® Variable Transformations may break Causal Reasoning /

® Observables may not be (meaningful) Causal Entities /
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

® Variable Transformations may break Causal Reasoning /
® Observables may not be (meaningful) Causal Entities /

® Variable Transformations may link Causal Reasoning at Different Scales
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

Variable Transformations may break Causal Reasoning ¢

Observables may not be (meaningful) Causal Entities /

Variable Transformations may link Causal Reasoning at Different Scales

Needed: Understanding of SCMs under Variable Transformations
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Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

Variable Transformations may break Causal Reasoning ¢

Observables may not be (meaningful) Causal Entities /
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