

Causal Models under Variable Transformations

Challenges for Causally Consistent Representation Learning

Sebastian Weichwald

🕆 sweichwald.de 🗸 @sweichwald

Variable Transformations may break Causal Reasoning &

$$diet \xrightarrow{} LDL \xrightarrow{-} heart disease$$

Variable Transformations may break Causal Reasoning &

 $diet \longrightarrow total chol. \xrightarrow{-} heart disease$

Variable Transformations may break Causal Reasoning &

 $diet \longrightarrow total chol. \xrightarrow{-} heart disease$

$$diet \xrightarrow{} LDL \xrightarrow{} heart disease$$

linear mixing

observed linear mixture

linear mixing

observed rgb pixel values

taking a photo

Variable Transformations may link Causal Reasoning at Different Scales

Causal Consistency of Structural Equation Models

auai.org/uai2017/proceedings/papers/11.pdf

Paul Rubenstein, S Weichwald, S Bongers, JM Mooij, D Janzing, M Grosse-Wentrup, B Schölkopf

Causal Models as Posets of Distributions

"Normal" Probabilistic Model:

$$\mathcal{M}_X:\theta\mapsto\mathbb{P}_\theta$$

"Normal" Probabilistic Model:

$$\mathcal{M}_X:\theta\mapsto\mathbb{P}_\theta$$

Causal Model:

$$\mathcal{M}_X: \theta \mapsto \{\mathbb{P}^{\mathsf{do}(i)}_{\theta} : i \in I_X\}$$
 I_X is set of interventions.

Causal Models

Causal Models

 I_X has partial ordering structure

Causal Models

 I_X has partial ordering structure

$$\mathcal{M}_X = (\mathcal{S}_X, \mathcal{I}_X, \mathbb{P}_{E_X})$$

$$\mathcal{S}_X = \begin{cases} X_1 = E_1 \\ X_2 = X_1 + E_2 \end{cases}$$

$$\mathcal{M}_X = (\mathcal{S}_X, \mathcal{I}_X, \mathbb{P}_{E_X})$$

•
$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = X_1 + E_2 \end{cases}$$

• $I_X = \{ \emptyset, \operatorname{do}(X_1 = 5), \operatorname{do}(X_2 = 3) \}$

$$\mathcal{M}_X = (\mathcal{S}_X, \mathcal{I}_X, \mathbb{P}_{E_X})$$

•
$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = X_1 + E_2 \end{cases}$$

- $I_X = \{\emptyset, do(X_1 = 5), do(X_2 = 3)\}$
- $E \sim \mathcal{N}(0, I)$

$$\mathcal{M}_X = (\mathcal{S}_X, \mathcal{I}_X, \mathbb{P}_{E_X})$$

•
$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = X_1 + E_2 \end{cases}$$

•
$$I_X = \{\emptyset, do(X_1 = 5), do(X_2 = 3)\}$$

•
$$E \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

observational

$$\mathbb{P}_{X_1}^{\varnothing} \sim \mathcal{N}(0,1)$$

$$\mathbb{P}_{X_2}^{\varnothing} \sim \mathcal{N}(0,2)$$

$$\mathcal{M}_{X} = (\mathcal{S}_{X}, \mathcal{I}_{X}, \mathbb{P}_{E_{X}})$$

$$\bullet \quad \mathcal{S}_{X} = \begin{cases} X_{1} = E_{1} \\ X_{2} = X_{1} + E_{2} \end{cases}$$

$$\bullet \quad \mathcal{I}_{X} = \{\emptyset, \operatorname{do}(X_{1} = 5), \operatorname{do}(X_{2} = 3)\}$$

$$\bullet \quad E \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

observational i

intervention on X_1

$$\mathbb{P}_{X_1}^{\varnothing} \sim \mathcal{N}(0,1)$$
 $\mathbb{P}_{X_1}^{\mathsf{do}(X_1=5)} \equiv 5$

$$\mathbb{P}_{X_2}^{\varnothing} \sim \mathcal{N}(0,2)$$
 $\mathbb{P}_{X_2}^{\mathsf{do}(X_1=5)} \sim \mathcal{N}(5,1)$

$$\mathcal{M}_{X} = (\mathcal{S}_{X}, \mathcal{I}_{X}, \mathbb{P}_{E_{X}})$$

$$\bullet \quad \mathcal{S}_{X} = \begin{cases} X_{1} = E_{1} \\ X_{2} = X_{1} + E_{2} \end{cases}$$

$$\bullet \quad \mathcal{I}_{X} = \{\emptyset, \operatorname{do}(X_{1} = 5), \operatorname{do}(X_{2} = 3)\}$$

$$\bullet \quad E \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

observational

intervention on X_1

intervention on X_2

$$\mathbb{P}_{X_1}^{\varnothing} \sim \mathcal{N}(0,1)$$

$$\mathbb{P}_{X_1}^{\mathsf{do}(X_1=5)} \equiv 5$$

$$\mathbb{P}_{X_1}^{\mathsf{do}(X_2=3)} \sim \mathcal{N}(0,1)$$

$$\mathbb{P}_{X_2}^{\varnothing} \sim \mathcal{N}(0,2)$$

$$\mathbb{P}_{X_2}^{\mathsf{do}(X_1=5)} \sim \mathcal{N}(5,1)$$

$$\mathbb{P}_{X_2}^{\mathsf{do}(X_2=3)} \equiv 3$$

→ 3 models inducing the same observational yet different interventional distributions

 \rightsquigarrow 3 models inducing the same observational yet different interventional distributions

fitting observational data well is not enough &

NEEDED: ALGEBRA OF DOING

Available: algebra of seeing

e.g., What is the chance it rained if we see the grass wet?

$$P(rain \mid wet) = ?$$
 $\{= P(wet \mid rain) \frac{P(rain)}{P(wet)}\}$

Needed: algebra of doing

e.g., What is the chance it rained if we **make** the grass wet?

P(rain | do(wet)) = ? {= P(rain)}

43

The Three Layer Causal Hierarchy

Level	Typical	Typical Questions	Examples
(Symbol)	Activity		
1. Association	Seeing	What is?	What does a symptom tell me
P(y x)		How would seeing X	about a disease?
		change my belief in Y ?	What does a survey tell us
			about the election results?
2. Intervention	Doing	What if?	What if I take aspirin, will my
P(y do(x),z)	Intervening	What if I do X ?	headache be cured?
			What if we ban cigarettes?
3. Counterfactuals	Imagining,	Why?	Was it the aspirin that
$P(y_x x',y')$	Retrospection	Was it X that caused Y ?	stopped my headache?
		What if I had acted	Would Kennedy be alive had
		differently?	Oswald not shot him?
			What if I had not been smok-
			ing the past 2 years?

The Three Layer Causal Hierarchy presupposes that *X* and *Y* are *the right* variables

Level	Typical	Typical Questions	Examples
(Symbol)	Activity		
1. Association	Seeing	What is?	What does a symptom tell me
P(y x)		How would seeing X	about a disease?
		change my belief in Y ?	What does a survey tell us
			about the election results?
2. Intervention	Doing	What if?	What if I take aspirin, will my
P(y do(x),z)	Intervening	What if I do X ?	headache be cured?
			What if we ban cigarettes?
3. Counterfactuals	Imagining,	Why?	Was it the aspirin that
$P(y_x x',y')$	Retrospection	Was it X that caused Y ?	stopped my headache?
		What if I had acted	Would Kennedy be alive had
		differently?	Oswald not shot him?
			What if I had not been smok-
			ing the past 2 years?

$$X \sim \mathbb{P}_X$$
 an r.v. in $X \implies \tau(X) \sim \mathbb{P}_{\tau(X)}$ is an r.v. in \mathcal{Y}

$$X \sim \mathbb{P}_X$$
 an r.v. in $\mathcal{X} \implies \tau(X) \sim \mathbb{P}_{\tau(X)}$ is an r.v. in \mathcal{Y}

$$\tau: \mathcal{P}_X \to \mathcal{P}_{\tau(X)} = \left(\left\{ \mathbb{P}^i_{\tau(X)} : i \in I_X \right\}, \leq_X \right)$$

$$X \sim \mathbb{P}_X$$
 an r.v. in $X \Longrightarrow \tau(X) \sim \mathbb{P}_{\tau(X)}$ is an r.v. in \mathcal{Y}

$$\tau : \mathcal{P}_X \to \mathcal{P}_{\tau(X)} = \left(\left\{ \mathbb{P}^i_{\tau(X)} : i \in I_X \right\}, \leq_X \right)$$

Suppose we are given \mathcal{M}_X and a transformation $\tau: X \to \mathcal{Y}$

$$X \sim \mathbb{P}_X$$
 an r.v. in $X \Longrightarrow \tau(X) \sim \mathbb{P}_{\tau(X)}$ is an r.v. in \mathcal{Y}

$$\tau: \mathcal{P}_X \to \mathcal{P}_{\tau(X)} = \left(\left\{\mathbb{P}^i_{\tau(X)} : i \in I_X\right\}, \leq_X\right)$$

Does there exist an SCM \mathcal{M}_Y with $\mathcal{P}_Y = \mathcal{P}_{\tau(X)}$? If so, then \mathcal{M}_Y will agree with our observations of \mathcal{M}_X via τ .

$$\mathcal{M}_X:$$
 X_1
 X_2
 X_3

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$I_X = \begin{cases} do(\varnothing) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$\mathcal{M}_X:$$
 X_1 X_2 X_3

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$\mathcal{M}_X:$$

$$\begin{array}{c} X_1 & X_2 \\ X_3 \end{array}$$

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$\mathcal{M}_Y:$$

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$\mathcal{M}_X:$$
 X_1
 X_2
 X_3

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$\mathcal{I}_X = \begin{cases} do(\varnothing) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$\mathcal{M}_Y:$$

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$E_1$$
, E_2 , E_3 as before

$$\mathcal{M}_X:$$

$$\begin{array}{c} X_1 & X_2 \\ X_3 \end{array}$$

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$I_X = \begin{cases} do(\emptyset) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$Y_1 = X_1 + X_2$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$E_1$$
, E_2 , E_3 as before

$$I_Y = \left\{ \right.$$

$$\mathcal{M}_X:$$
 X_1 X_2 X_3

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$I_X = \begin{cases} do(\emptyset) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$\mathcal{M}_Y:$$

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$E_1$$
, E_2 , E_3 as before

$$I_Y = \begin{cases} do(\emptyset) \end{cases}$$

$$\mathcal{M}_X:$$

$$\begin{array}{c} X_1 & X_2 \\ X_3 \end{array}$$

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$I_X = \begin{cases} do(\emptyset) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$\mathcal{M}_Y:$$

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$E_1$$
, E_2 , E_3 as before

$$\mathcal{I}_Y = \begin{cases} do(\emptyset) \\ do(Y_1 = 1) \end{cases}$$

$$\mathcal{M}_X:$$
 X_1
 X_2
 X_3

$$S_X = \begin{cases} X_1 = E_1 \\ X_2 = E_2 \\ X_3 = X_1 + X_2 + E_3 \end{cases}$$

$$E_2 = 1$$
; E_1 , E_3 arbitrary

$$I_X = \begin{cases} do(\emptyset) \\ do(X_1 = 0) \\ do(X_1 = 0, X_2 = 0) \end{cases}$$

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$S_Y = \begin{cases} Y_1 = E_1 + E_2 \\ Y_2 = Y_1 + E_3 \end{cases}$$

$$E_1$$
, E_2 , E_3 as before

$$I_Y = \begin{cases} do(\emptyset) \\ do(Y_1 = 1) \\ do(Y_1 = 0) \end{cases}$$

 \mathcal{M}_X :

$$\mathcal{M}_Y$$
:

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

$$\mathbb{P}_{X} \longrightarrow \mathbb{P}_{X}^{\mathsf{do}(X_{1}=0)} \longrightarrow \mathbb{P}_{X}^{\mathsf{do}(X_{1}=0,X_{2}=0)}$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

 \mathcal{M}_X :

 \mathcal{M}_Y :

$$Y_1 = X_1 + X_2$$

$$\downarrow$$

$$Y_2 = X_3$$

Let
$$\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$$
 be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

• structural equations S_X ;

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (I_X, \leq_X) of interventions;

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- **3** exogenous variables distributed according to \mathbb{P}_{E_X} .

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- **3** exogenous variables distributed according to \mathbb{P}_{E_X} .

Let $\mathcal{M}_Y = (S_Y, \mathcal{I}_Y, \mathbb{P}_{E_Y})$ be another SCM and $\tau : \mathcal{X} \to \mathcal{Y}$.

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- **3** exogenous variables distributed according to \mathbb{P}_{E_X} .

Let
$$\mathcal{M}_Y = (S_Y, I_Y, \mathbb{P}_{E_Y})$$
 be another SCM and $\tau : \mathcal{X} \to \mathcal{Y}$.

 \mathcal{M}_Y is an exact τ -transformation of \mathcal{M}_X if

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- $\ \ \ \$ exogenous variables distributed according to \mathbb{P}_{E_X} .

Let $\mathcal{M}_Y = (S_Y, I_Y, \mathbb{P}_{E_Y})$ be another SCM and $\tau : \mathcal{X} \to \mathcal{Y}$.

 \mathcal{M}_Y is an exact τ -transformation of \mathcal{M}_X if

$$\mathbb{P}_{\tau(X)}^{i} = \mathbb{P}_{Y}^{\mathsf{do}(\omega(i))} \qquad \forall i \in \mathcal{I}_{X}$$

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- **3** exogenous variables distributed according to \mathbb{P}_{E_X} .

Let $\mathcal{M}_Y = (S_Y, I_Y, \mathbb{P}_{E_Y})$ be another SCM and $\tau : X \to \mathcal{Y}$.

 \mathcal{M}_Y is an exact τ -transformation of \mathcal{M}_X if

$$\mathbb{P}_{\tau(X)}^{i} = \mathbb{P}_{Y}^{\mathsf{do}(\omega(i))} \qquad \forall i \in \mathcal{I}_{X}$$

for a surjective order-preserving map $\omega: \mathcal{I}_X \to \mathcal{I}_Y$.

Let $\mathcal{M}_X = (S_X, I_X, \mathbb{P}_{E_X})$ be an SCM over variables $X = (X_i : i \in \mathbb{I}_X)$ with

- structural equations S_X ;
- **2** restricted partially ordered set (\mathcal{I}_X, \leq_X) of interventions;
- \odot exogenous variables distributed according to \mathbb{P}_{E_X} .

Let $\mathcal{M}_Y = (S_Y, I_Y, \mathbb{P}_{E_Y})$ be another SCM and $\tau : \mathcal{X} \to \mathcal{Y}$.

 \mathcal{M}_Y is an exact τ -transformation of \mathcal{M}_X if

$$\mathbb{P}_{\tau(X)}^{i} = \mathbb{P}_{Y}^{\mathsf{do}(\omega(i))} \qquad \forall i \in \mathcal{I}_{X}$$

for a surjective order-preserving map $\omega: \mathcal{I}_X \to \mathcal{I}_Y$.

 $\implies \mathcal{M}_X$ and \mathcal{M}_Y are causally consistent

Causal Consistency

Elementary Properties of Exact Transformations

Lemma

The identity mapping is an exact transformation.

$$\mathcal{M}_X \longrightarrow \mathcal{M}_X$$

Lemma

Exact transformations are transitively closed.

Few Transformations yield Causally Consistent Representations &

Marginalisation of variables

Few Transformations yield Causally Consistent Representations £

Marginalisation of variables

Few Transformations yield Causally Consistent Representations \$\forall 1\$

- Marginalisation of variables
- Micro- to macro-level and aggregate features

Few Transformations yield Causally Consistent Representations &

- Marginalisation of variables
- Micro- to macro-level and aggregate features

Few Transformations yield Causally Consistent Representations £

- Marginalisation of variables
- Micro- to macro-level and aggregate features
- Stationary behaviour of dynamical processes

Few Transformations yield Causally Consistent Representations £

- Marginalisation of variables
- Micro- to macro-level and aggregate features
- Stationary behaviour of dynamical processes

Challenges for Causally Consistent Representation Learning

Variable Transformations may break Causal Reasoning ‡

- Variable Transformations may break Causal Reasoning &
- Observables may not be (meaningful) Causal Entities &

- Variable Transformations may break Causal Reasoning &
- Observables may not be (meaningful) Causal Entities ‡
- Variable Transformations may link Causal Reasoning at Different Scales

- Variable Transformations may break Causal Reasoning &
- Observables may not be (meaningful) Causal Entities &
- Variable Transformations may link Causal Reasoning at Different Scales
- Needed: Understanding of SCMs under Variable Transformations

- Variable Transformations may break Causal Reasoning &
- Observables may not be (meaningful) Causal Entities &
- Variable Transformations may link Causal Reasoning at Different Scales
- Needed: Understanding of SCMs under Variable Transformations
- Few Transformations yield Causally Consistent Representations &

