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More online lectures on Causality

4 lectures on causality by ] Peters (8 h)
MIT Statistics and Data Science Center, 2017 stat.mit.edu/news/four-lectures-causality

® causality tutorial by D Janzing and S Weichwald (4 h)

Conference on Cognitive Computational Neuroscience 2019 sweichwald.de/cen2019
® course on causality by S Bauer and B Scholkopf (3 h)

Machine Learning Summer School 2020 youtube.com/watch?v=btmJtThwmhA

® course on causality by D Janzing and B Schélkopf (3 h)

Machine Learning Summer School 2013 mlss.tuebingen.mpg.de/2013/speakers.html
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“All philosophers, of every school, imagine that
causation is one of the fundamental axioms or
postulates of science, yet, oddly enough, in ad-
vanced sciences such as gravitational astronomy,
the word "cause" never occurs. [...] To me, it seems
that [...] the reason why physics has ceased to
look for causes is that, in fact, there are no such
things. The law of causality, | believe, like much
that passes muster among philosophers, is a relic
of a bygone age, surviving, like the monarchy, only
because it is erroneously supposed to do no harm.”

— B Russell (1913), On the Notion of Cause

Image from theeconplayground.com. Sebastian Weichwald — Causal Inference — Slide 5
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“Fortunately, very few physicists paid attention
to Russell’s enigma. They continued to write
equations in the office and talk cause—effect in the
cafeteria; with astonishing success they smashed
the atom, invented the transistor and the laser.

The same is true for engineering”

— J Pearl (2009), Causality

Image from baye.cs.ucla.edu. Sebastian Weichwald — Causal Inference — Slide 6
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7 Causal questions require causal answers.
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Eating chocolate produces Nobel prize
winners, says study

You don’t have to be a genius to like chocolate,
By Oliver Nieburg &', 11-Oct-2012

but geniuses are more likely to eat lots of
chocolate, at least according to a new pap
Related tags: noble prize, nobel laureate, Einstein, Marie Curie, chocolate, brain, Switzerland, g to 3 new paper

Sweden, candy ublished in the August New England Journal oj

Medicine. Franz. Messerli renorts a highly

Messerli duly points out that correlation does
not prove causation, but, he writes, "since
chocolate consumption has been documented
to improve cognitive function, it seems most
likely that in a dose-dependent way, chocolate
intake provides the abundant fertile ground
needed for the sprouting of Nobel laureates.
Obviously, these findings are hypothesis-

generating only and will have to be tested in a

prospective, randomized trial."

Messerli (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates. New England Journal of Medicine. Online articles downloaded from confectionarynews.com and forbes.com on 2013-01-29. Sebastian Weichwald — Causal Inference — Slide 8
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Kim goes on a cruise to another country..
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Kim goes on a cruise to another country..

SEEING: ..and reports back that year’s chocolate consumption.
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Kim goes on a cruise to another country..
SEEING: ..and reports back that year’s chocolate consumption.

DOING: ..and brings enormous amounts of chocolate for a year.

Messerli (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates. New England Journal of Medicine. Online articles downloaded from confectionarynews.com and forbes.com on 2013-01-29. Sebastian Weichwald — Causal Inference — Slide 8
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[ T

hocoee Consumpion ercape

Liretes per 10 il Poulsion

Kim goes on a cruise to another country..
SEEING: ..and reports back that year’s chocolate consumption.

DOING: ..and brings enormous amounts of chocolate for a year.

~> Can we predict #country’s Nobel Laureates?

Messerli (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates. New England Journal of Medicine. Online articles downloaded from confectionarynews.com and forbes.com on 2013-01-29. Sebastian Weichwald — Causal Inference — Slide 8
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7 Causal questions require causal answers.
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7 Causal questions require causal answers.

© “Correlation does not imply causation.”
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7 Causal questions require causal answers.

© “Correlation does not imply causation.” SEEING VS DOING
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What’s the cause and what’s the effect?

Mooij, Janzing, Zscheischler, and Schalkopf (2014). C airs repository at web mpg.de/cause-effect, Sebastian Weichwald — Causal Inference — Slide 10
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What’s the cause and what’s the effect?

Temperature Z — Y Altitude

Mooij, Janzing, Zscheischler, and Schalkopf (2014). C airs repository at web mpg.de/cause-effect, Sebastian Weichwald — Causal Inference — Slide 10
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What’s the cause and what’s the effect?

Mooij, Janzing, Zscheischler, and Schalkopf (2014). CauseEffectPairs repository at web gen.mpg.de/cause-effect Sebastian Weichwald — Causal Inference — Slide 11
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What’s the cause and what’s the effect?

Solar Radiation W - Q Temperature

Mooij, Janzing, Zscheischler, and Schalkopf (2014). CauseEffectPairs repository at web gen.mpg.de/cause-effect Sebastian Weichwald — Causal Inference — Slide 11
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7 Causal questions require causal answers.

© “Correlation does not imply causation.” SEEING VS DOING
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7 Causal questions require causal answers.
© “Correlation does not imply causation.” SEEING VS DOING

© Correlation(s) may tell us something about causation.
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7 Causal questions require causal answers.
© “Correlation does not imply causation.” SEEING VS DOING

© Correlation(s) may tell us something about causation.

~-> Causal Inference: assumptions, data, explicit, algorithmic

Sebastian Weichwald — Causal Inference — Slide 12
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CAUSATION AS A
PROGRAMMER’S NIGHTMARE

Input: 1. “If the grass is wet,
then it rained”

2. “If we break this bottle,
the grass will get wet”

Output: “If we break this bottle,
then it rained”

ning, and Inference. Sebastian Weichwald — Causal Inference — Slide 13
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NEEDED: ALGEBRA OF DOING

Available:algebra of seeing

e.g., What is the chance it rained
if we see the grass wet?

P(rain)

P (rain | wet) =? {= P (wet | rain) Blwer) }
Needed: algebra of doing

e.g., What is the chance it rained

if we make the grass wet?
P (rain \do(wet)) =? {= P (rain)}

ning, and Inference. Sebastian Weichwald — Causal Inference — Slide 14
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Formalizing the difference between seeing and doing

® observational probabilities:
p(y|x) probability for Y = y, given that we observed X = x

® interventional probabilities:
p(y|do(x)) probability for Y =y, given that we have set X to x

Confusing p(y|x) with p(y|do(x)) is the reason for most of the common
misconceptions about causality!

Sebastian Weichwald — Causal Infe

rence — Slide 15
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“Normal” Probabilistic Model:

MX:QHPQ

Sebastian Weichwald — Causal Inference — Slide 16
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“Normal” Probabilistic Model: Causal Model:

MxiQHPg MxieH{Pgo(i)iiGIx}
Iy is set of interventions.

Sebastian Weichwald — Causal Inference — Slide 16
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Causal Models

Sebastian Weichwald — Causal Inference — Slide 17
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Causal Models

PdO(A:O’ C:OZ/ .

X [
SF~

Ix has partial ordering structure
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Causal Models

PdO(A:O’ C:OZ/ .

X [
SF~

Ix has partial ordering structure

My implies the poset of distributions Py := ({Pio(i) S IX} , Sx)

Sebastian Weichwald — Causal Inference — Slide 17
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Structural Causal Models

Mx = (Sx, Ix, Pk,)

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

X1:E
Sy = ‘

Mx = (Sx, Ix, Pk,) X=X+ 5

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

Mx = (Sx, Ix, Pk,)

X1 =E
Xo=X1+E
e Ix = {®, do(X; = 5), do(X, = 3)}

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

Xi=E

Mx = (Sx, Ix, Pk,) X=X+ E
o Iy = {@, do(X; = 5), do(X, = 3)}

e E~N(0,1)

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

X1 = E]
[ ] X e
Mx = (Sx, Ix, Pk,) X=X+ E
o Iy = {@, do(X; = 5), do(X, = 3)}
e F~N(0,

observational
P§~Nmn

P%~N@D

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

X1 = E]
[ ] X e
My = (Sx, Ix, Pry) X=X+ b
e Jx ={@, do(X; =5), do(X, =3)}
e F~N(0,
observational intervention on X

do(X:=
P? ~N(0,1) PP =5

P?(z ~ N(0,2) P;j(j(x1=5) ~ N(5,1)

Sebastian Weichwald — Causal Inference — Slide 18
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Structural Causal Models

X1 = E]
° SX =
Mx = (Sx, Ix, Pry) X=X+kh
e Jx ={@, do(X; =5), do(X, =3)}
e F~N(0,
observational intervention on X; intervention on X,
do(X;= do(Xp=
P? ~N(0,1) PP =5 P~ N(0,7)

PR N©2) pe LN (s 1) P =3

Sebastian Weichwald — Causal Inference — Slide 18
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causal discovery?

observations

(BP0 i€ 1y 2 L)

Sebastian Weichwald — Causal Inference — Slide 19
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A =14B = 12C+/2Na A= V2N A=h  +Ny
B= V3N B=1hA+ C+\3/2Np B=h+C+Ng
C =158 +V2/sNe C= Ne C= N¢
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A =14B = 12C+/2Na A= V2N A=h  +Ny
= V3N B=1hA+ C+\3/2Np B=h+C+Ng
C =158 +V2/sNe C= Ne C= N¢

~> 3 models inducing the same observational yet different interventional distributions

Sebastian Weichwald — Causal Inference — Slide 20
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A =14B = 12C+/2Na A= V2N A=h  +Ny
= V3N B=1hA+ C+\3/2Np B=h+C+Ng
C= I/‘iB +\/273NC C= NC C= NC

~> 3 models inducing the same observational yet different interventional distributions

# fitting observational data well is not enough #

Sebastian Weichwald — Causal Inference — Slide 20
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

Sebastian Weichwald — Causal Inference — Slide 21
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

00 00

Sebastian Weichwald — Causal Inference — Slide 21
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

00 00

® every statistical dependence is due to a causal relation

Sebastian Weichwald — Causal Inference — Slide 21
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

00 00

® every statistical dependence is due to a causal relation

® cases I, Il, and Il can also occur simultaneously

Sebastian Weichwald — Causal Inference — Slide 21
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

00 00

® every statistical dependence is due to a causal relation
® cases I, Il, and Il can also occur simultaneously

® distinction between the 3 cases is a key problem in scientific reasoning

Sebastian Weichwald — Causal Inference — Slide 21
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FU nCthl’]al mOdel Of Causal lty Pearl and Spirtes, Glymour, Scheines

® every node Xj is a function of its parents and an unobserved noise term E;

O\" ‘ ‘ PA; (Parents of X;)

ﬁ(P ji E)

® all noise terms E; are statistically independent (causal sufficiency)

® which properties of P(Xj,..., X,) follow?

Sebastian Weichwald — Causal Inference — Slide 22
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Causal Markov condition (4 equivalent statements)

® existence of a functional model
® local Markov condition: every node is conditionally independent of its
non-descendants, given its parents

parents of X;

non-descendants

o

¢ global Markov condition: describes all independences via d-separation
® Markov factorization: P(X,..., X,) = [I; P(Xj|PA))

Q descendants

Sebastian Weichwald — Causal Inference — Slide 23
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Metaphor for the local Markov condition

If someone knows the genes of
X’s parents, neither the genes of
/ the grandmother nor the genes
- of the brother contain additional
information about X.

[ Person
X
A4

Sebastian Weichwald — Causal Inference — Slide 24
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Given observations of W, E, and S (®®), what is the causal structure?

Sebastian Weichwald — Causal Inference — Slide 25



UNIVERSITY OF COPENHAGEN COPENHAGEN CAUSALITY LAB

Given observations of W, E, and S (®®), what is the causal structure?

® Which variable pairs are (in)dependent? i dependent given the 314

Sebastian Weichwald — Causal Inference — Slide 25
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Given observations of W, E, and S (®®), what is the causal structure?

® Which variable pairs are (in)dependent? i dependent given the 314

® Assume existence of a functional model.

Sebastian Weichwald — Causal Inference — Slide 25
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Given observations of W, E, and S (®®), what is the causal structure?

® Which variable pairs are (in)dependent? i dependent given the 314
® Assume existence of a functional model.

® Which causal structures are possible? ¢

Sebastian Weichwald — Causal Inference — Slide 25
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Given observations of W, E, and S (®®), what is the causal structure?

® Which variable pairs are (in)dependent? i dependent given the 314
® Assume existence of a functional model.

® Which causal structures are possible? ¢

® Further assumption to narrow it down?

Sebastian Weichwald — Causal Inference — Slide 25
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dependent dependent independent

Sebastian Weichwald — Causal Inference — Slide 26
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dependent dependent independent

Lo b0 d 0 d bd bl o
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dependent dependent independent

Lo b0 d 0 d bd bl o

Assume existence of a functional model (causal sufficiency) & faithfulness.

Sebastian Weichwald — Causal Inference — Slide 26
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Pearl’s do-operator
How to compute p(xi, ..., xp| do(x})):

® Write p(x1,...,X,) as

[ TpOxel parents(xi)
k=1

* and replace p(x;| parents(x;)) with &y, -

p(x1,-- xol do(x))) = 8y | | (el parents(xi))

k#i

Sebastian Weichwald — Causal Inference — Slide 27
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Examples

00 00

D 2) 3)
@ interventional and observational probabilities coincide (seeing = doing)
p(yldo(x)) = p(y|x)
@® intervening on x does not change y

p(yldo(x)) = p(y) # p(y|x)

@® intervening on x does not change y

p(yldo(x)) = p(y) # p(y|x)

Sebastian Weichwald — Causal Inference — Slide 28
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Confounder correction

p(yldo(x)) = Y plylx, 2)p(2) # ) plylx 2)p(zlx) = p(ylx)

Sebastian Weichwald — Causal Inference — Slide 29
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SMOKING AND CANCER:
HANDLING COMPETING MODELS

1. Surgeon General (1964):

O———0 P (cldo(s))= P(cls)
Smoking Cancer

2. Tobacco Industry:
<) Genotype (unobserved)

o," \‘o P (cldo(s))=P (c)
Smoking Cancer
3. Combined:

7 P (cldo(s)) = noncomputable
» Ry

O————0
Smoking Cancer

4. Combined and refined:

P (c | do(s)) = computable

» B

Smoking Tar Cancer m

Pearl (2009). Causality: Models, Reasoning, and Inference. Sebastian Weichwald — Causal Inference — Slide 30
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TYPICAL DERIVATION IN CAUSAL CALCULUS

—_—
Smoking Tar Cancer

P(cldo{s})=X,P(cldo{s}, t) P(t |do{s}) Probability Axioms
=X, P (cldofs}. do{t}) P (t | do{s}) Rl

=3, P (cldo{s}, do{t) P (i1s) Rule2 ¥ . _
=Z,P(cldo{t}) P(t1s) Rule 3 . :)

=X I P(cldoft}, s) P (s Ido{r}) P(tls) Probability Axioms
=X L P(clt s) P(s\do{t)) P(tls) Rule 2 oy

|= LI Pl 5) PP Rule 3 ¥y

Pearl (2009). Causality: Models, Reasoning, and Inference. Sebastian Weichwald — Causal Inference — Slide 31
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What if T had acted
differently?

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? ‘What does a symptom tell me
P(y|x) How would seeing X about a disease?
change my belief inY? What does a survey tell us

about the election results?
2. Intervention Doing What if? ‘What if I take aspirin, will my
P(y|do(z), z) Intervening What if T do X7 headache be cured?

What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
Ply.|2',y") Retrospection Was it X that caused Y7 stopped my headache?

Would Kennedy be alive had
Oswald not shot him?

What if I had not been smok-
ing the past 2 years?

Pearl (2018). Theoretical Impediments to Machine Learning — With Seven Sparks from the Causal Revolution. WSDM 2018,
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PENHAGEN

Challenges

Process:

1 Autocorrelation °
2 Time delays °
3 Nonlinear dependencies i
4 Chaotic state-dependence

5 Different time scales

6 Noise distributions

Data:

7 Variable extraction

8 Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

Computational/statistical:
15 Sample size

16 High dimensionality
17 Uncertainty estimation

(.

)
I‘é{'la'f e

Runge et al. (2019). Inferring causation from time series in Earth system sciences. Nature Communications.

x < X

A APErd |
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7 Causal questions require causal answers.
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© Correlation(s) may tell us something about causation.
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7 Causal questions require causal answers.
© “Correlation does not imply causation.” SEEING VS DOING

© Correlation(s) may tell us something about causation.
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Causal Inference: assumptions, data, explicit, algorithmic

Cakd: .
Copagn? Ob#®@ 7 @sweichwald
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https://stat.mit.edu/news/four-lectures-causality/
https://sweichwald.de/ccn2019
https://www.youtube.com/watch?v=btmJtThWmhA
http://mlss.tuebingen.mpg.de/2013/speakers.html
https://twitter.com/sweichwald
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Causal Inference: assumptions, data, explicit, algorithmic

4 lectures on causality by ] Peters (8 h)
MIT Statistics and Data Science Center, 2017 stat.mit.edu/news/four-lectures-causality

® causality tutorial by D Janzing and S Weichwald (4 h)
Conference on Cognitive Computational Neuroscience 2019 sweichwald.de/cen2019

® course on causality by S Bauer and B Scholkopf (3 h)

Machine Learning Summer School 2020 youtube . com/watch?v=btms tThymha

® course on causality by D Janzing and B Schélkopf (3 h)

Machine Learning Summer School 2013 mlss.tuebingen.mpg.de/2013/speakers.html

Co%n%:;z‘,:ty Fo®® J @sweichwald
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